Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Journal of Enhanced Heat Transfer
Impact-faktor: 0.562 5-jähriger Impact-Faktor: 0.605 SJR: 0.211 SNIP: 0.361 CiteScore™: 0.33

ISSN Druckformat: 1065-5131
ISSN Online: 1563-5074

Volumes:
Volumen 26, 2019 Volumen 25, 2018 Volumen 24, 2017 Volumen 23, 2016 Volumen 22, 2015 Volumen 21, 2014 Volumen 20, 2013 Volumen 19, 2012 Volumen 18, 2011 Volumen 17, 2010 Volumen 16, 2009 Volumen 15, 2008 Volumen 14, 2007 Volumen 13, 2006 Volumen 12, 2005 Volumen 11, 2004 Volumen 10, 2003 Volumen 9, 2002 Volumen 8, 2001 Volumen 7, 2000 Volumen 6, 1999 Volumen 5, 1998 Volumen 4, 1997 Volumen 3, 1996 Volumen 2, 1995 Volumen 1, 1994

Journal of Enhanced Heat Transfer

DOI: 10.1615/JEnhHeatTransf.v8.i4.10
pages 215-229

Enhancement of Condensation Heat Transfer on a Finned Tube Using an Electric Field

Ren Cai C. Chu
Department of Mechanical and System Engineering, Gifu University, 1-1 Yanagito, Gifu-shi, Gifu 501-1193, Japan
Shigefumi Nishio
Key Laboratory of Enhanced Heat Transfe and Energy Conservation, Ministry of Education, School of Chemical and Energy Engineering, South China University of Technology, China; and Institute of Industrial Science and Technology, University of Tokyo, Japan
Ichiro Tanasawa
Department of Mechanical Engineering, Nihon University, 1 Tokusada, Tamura-cho, Kooriyama-shi, Fukushima 963-8642, Japan

ABSTRAKT

In the present paper, an attempt is made to develop an effective EHD enhancement technique for condensation heat transfer of steam around a horizontal finned tube. The main idea in the present study is to reduce the power consumption by using a partially-coated electrode, and the experimental data on heat transfer coefficients and flooding angles are presented. The results indicate that, by using such an electrode, the enhancement ratio remains at almost the same level as that of a bare electrode but the power consumption can be markedly decreased. Within the present experimental range, the condensation heat transfer coefficient on the finned tube with the partially-coated electrode reaches a value about 3 times larger than that without the electrode. In addition, a model is presented for the EHD effect on the flooding angle, and it was confirmed that the prediction from the model is in good agreement with the experimental data.