Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Journal of Enhanced Heat Transfer
Impact-faktor: 0.562 5-jähriger Impact-Faktor: 0.605 SJR: 0.211 SNIP: 0.361 CiteScore™: 0.33

ISSN Druckformat: 1065-5131
ISSN Online: 1026-5511

Volumes:
Volumen 26, 2019 Volumen 25, 2018 Volumen 24, 2017 Volumen 23, 2016 Volumen 22, 2015 Volumen 21, 2014 Volumen 20, 2013 Volumen 19, 2012 Volumen 18, 2011 Volumen 17, 2010 Volumen 16, 2009 Volumen 15, 2008 Volumen 14, 2007 Volumen 13, 2006 Volumen 12, 2005 Volumen 11, 2004 Volumen 10, 2003 Volumen 9, 2002 Volumen 8, 2001 Volumen 7, 2000 Volumen 6, 1999 Volumen 5, 1998 Volumen 4, 1997 Volumen 3, 1996 Volumen 2, 1995 Volumen 1, 1994

Journal of Enhanced Heat Transfer

DOI: 10.1615/JEnhHeatTransf.2012000620
pages 191-197

TURBULENT CONVECTIVE HEAT TRANSFER OF SUSPENSIONS OF Γ-AL2O3 AND CUO NANOPARTICLES (NANOFLUIDS)

Seyed Gholamreza Etemad
Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
B. Farajollahi
Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
M. Hajipour
Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
Jules Thibault
Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada; Departement de Genie chimique, University Laval Sainte-Foy (Quebec) Canada G1К 7P4; McMaster University, Hamilton, Ontario L8S 4L7

ABSTRAKT

This study presents the results of an experimental investigation on convective heat-transfer behavior of two nanofluids. Nanoparticles used in the experiments were γ-alumina (γ-Al2 O3) and copper oxide (CuO) with different mean diameters. The nanoparticles were dispersed in distilled water as the base fluid. Convective heat-transfer coefficients were measured in a horizontal tube under turbulent flow conditions for different nanoparticle concentrations. Results show that adding nanoparticles into the base fluid enhances the convective heat-transfer coefficient and the Nusselt number of the suspensions. The convective heat transfer of nanofluids increases with nanoparticle volume concentration.


Articles with similar content:

EXPERIMENTAL INVESTIGATION OF THE EFFECT EXERTED BY NANOPARTICLES ON THE HEAT TRANSFER COEFFICIENT OF HERSCHEL−BULKLEY FLUIDS
Heat Transfer Research, Vol.45, 2014, issue 6
Saeed Zeinali Heris, Roozbeh Mollabbasi, Seyyed Hosein Noie
AL2O3−WATER NANOFLUID FALLING-FILM FLOW AND HEAT TRANSFER CHARACTERISTICS ON A HORIZONTAL CIRCULAR TUBE
Journal of Enhanced Heat Transfer, Vol.20, 2013, issue 3
Saeid Jani
FREE CONVECTION HEAT TRANSFER IN HORIZONTAL AND VERTICAL RECTANGULAR CAVITIES FILLED WITH NANOFLUIDS
International Heat Transfer Conference 13, Vol.0, 2006, issue
Christopher Yap, Arun S. Mujumdar, X. Q. Wang
EXPERIMENTS ON NATURAL CONVECTION HEAT TRANSFER OF A NANOFLUID IN A SQUARE ENCLOSURE
International Heat Transfer Conference 13, Vol.0, 2006, issue
C. J. Ho, C. C. Lin
EXPERIMENTAL INVESTIGATION OF NATURAL CONVECTION HEAT TRANSFER OF Fe3O4/ ETHYLENE GLYCOL NANOFLUID UNDER MAGNETIC FIELD
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2011, issue
Nasrin Etesami, Navid Naseri Borujeni, Mohsen Nasr Esfahany