Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Journal of Enhanced Heat Transfer
Impact-faktor: 1.406 5-jähriger Impact-Faktor: 1.075 SJR: 0.287 SNIP: 0.653 CiteScore™: 1.2

ISSN Druckformat: 1065-5131
ISSN Online: 1563-5074

Volumes:
Volumen 27, 2020 Volumen 26, 2019 Volumen 25, 2018 Volumen 24, 2017 Volumen 23, 2016 Volumen 22, 2015 Volumen 21, 2014 Volumen 20, 2013 Volumen 19, 2012 Volumen 18, 2011 Volumen 17, 2010 Volumen 16, 2009 Volumen 15, 2008 Volumen 14, 2007 Volumen 13, 2006 Volumen 12, 2005 Volumen 11, 2004 Volumen 10, 2003 Volumen 9, 2002 Volumen 8, 2001 Volumen 7, 2000 Volumen 6, 1999 Volumen 5, 1998 Volumen 4, 1997 Volumen 3, 1996 Volumen 2, 1995 Volumen 1, 1994

Journal of Enhanced Heat Transfer

DOI: 10.1615/JEnhHeatTransf.2018029249
pages 167-178

USING ORGANIC PHASE-CHANGE MATERIALS FOR ENHANCED ENERGY STORAGE IN WATER HEATERS: AN EXPERIMENTAL STUDY

Jifen Wang
School of Science, College of Art and Science, Shanghai Polytechnic University, No. 2360 Jinhai Rd., Pudong District, Shanghai, 201209, China; Research Center of Resource Recycling Science and Engineering, Shanghai Polytechnic University, Shanghai 201209, China
Huaqing Xie
School of Environmental and Materials Engineering, School of Science, College of Art and Science, Shanghai Polytechnic University, No. 2360 Jinhai Rd. Pudong District, Shanghai, 201209, China
Zhixiong Guo
Department of Mechanical and Aerospace Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
Le Cai
School of Science, College of Art and Science, Shanghai Polytechnic University, No. 2360 Jinhai Rd., Pudong District, Shanghai, 201209, China; Research Center of Resource Recycling Science and Engineering, Shanghai Polytechnic University, Shanghai 201209, China
Kai Zhang
School of Science, College of Art and Science, Shanghai Polytechnic University, No. 2360 Jinhai Rd., Pudong District, Shanghai, 201209, China; Research Center of Resource Recycling Science and Engineering, Shanghai Polytechnic University, Shanghai 201209, China

ABSTRAKT

Organic phase-change material for enhanced energy storage was prepared by adding SiO2 particles in a certain proportion into molten palmitic acid (PA) with stirring and intensive sonication at a constant temperature. The thermal properties of the SiO2/PA composite were experimentally characterized. As compared with pure PA, the latent heat capacity of the composite with the addition of 3 wt% SiO2 particles is increased by 51.7 kJ/kg, reaching 214.7 kJ/kg, which is the highest value among the composites tested with varying SiO2 ratio from 1 to 5 wt%; the thermal conductivity of the 3 wt%SiO2/PA composite is also increased by 12% at 30°C (solid state) and 7% at 70°C (liquid state), respectively. A water heater was built and tested with embedded capsules containing the 3 wt% SiO2/PA composite and pure PA, respectively. The lab-built phase-change water heater is much smaller in size than an ordinary household water heater in comparison and uses reduced electrical power. However, it responds faster and has a larger volume ratio of hot water output to water heater size. During the turning-off test, the water heater with 3 wt% SiO2/PA can provide 2.23 times hot water volume of heater size; while the ordinary water heater can only provide 1.41 times hot water volume of tank size.

REFERENZEN

  1. Aumporn, O., Zeghmati, B., Chesneau, X., and Janjai, S., Numerical Study of a Solar Greenhouse Dryer with a Phase-Change Material as an Energy Storage Medium, Heat Transf. Res., vol. 49, pp. 509-528, 2018.

  2. Bouhal, T., Rhafiki, T.E., Kousksou, T., Jamil, A., and Zeraouli, Y., PCM Addition inside Solar Water Heaters: Numerical Comparative Approach, J. Energy Storage, vol. 19, pp. 232-246,2018.

  3. Chaichan, M.T. and Kazem, H.A., Water Solar Distiller Productivity Enhancement using Concentrating Solar Water Heater and Phase Change Material (PCM), Case Studies Therm.. Eng., vol. 5, pp. 151-159, 2015.

  4. Chen, P., Gao, X., Wang, Y., Xu, T., and Fang, Y., Metal Foam Embedded in Sebs/Paraffin/Hdpe Form-Stable PCMs for Thermal Energy Storage, Sol. Energy Mater. Sol. Cells, vol. 149, pp. 60-65,2016.

  5. de Gracia, A. and Cabeza, L.F., Numerical Simulation of a PCM Packed Bed System: A Review, Renew. Sustain. Energy Rev., vol. 69, pp. 1055-1063,2017.

  6. Faegh, M. and Shafii, M.B., Experimental Investigation of a Solar Still Equipped with an External Heat Storage System using Phase Change Materials and Heat Pipes, Desalination, vol. 409, pp. 128-135, 2017.

  7. Jamekhorshid, A., Sadrameli, S.M., Barzin, R., and Farid, M.M., Composite of Wood-Plastic and Micro-Encapsulated Phase Change Material (MEPCM) used for Thermal Energy Storage, Appl. Therm. Eng., vol. 112, pp. 82-88,2017.

  8. Jin, L., Zhang, R.B., and Du, X.L., Computational Homogenization for Thermal Conduction in Heterogeneous Concrete after Mechanical Stress, Constr. Build. Mater, vol. 141, pp. 222-234,2017.

  9. Li, Z.T., Wu, Y.X., Zhuang, B.S., Zhao, X.Z., Tang, Y., Ding, X.R., and Chen, K.H., Preparation of Novel Copper-Powder-Sintered Frame/Paraffin Form-Stable Phase Change Materials with Extremely High Thermal Conductivity, Appl. Energy, vol. 206, pp. 1147-1157,2017.

  10. Moghadassi, A.R., Parvizian, F., Abareshi, B., Azari, and Alhajri, I., Optimization of Regenerative Cycle with Open Feed Water Heater using Genetic Algorithms and Neural Networks, J. Therm. Anal. Calorim., vol. 100, pp. 757-761,2010.

  11. Mortazavi, B., Yang, H.L., Mohebbi, F., Cuniberti, G., and Rabczuk, T., Graphene or H-Bn Paraffin Composite Structures for the Thermal Management of Li-Ion Batteries: A Multiscale Investigation, Appl. Energy, vol. 202, pp. 323-334,2017.

  12. Naghavi, M.S., Ong, K.S., Badruddin, I.A., Mehrali, M., and Metselaar, H.S.C., Thermal Performance of a Compact Design Heat Pipe Solar Collector with Latent Heat Storage in Charging/Discharging Modes, Energy, vol. 127, pp. 101-115,2017.

  13. Reddigari, M.R., Nallusamy, N., Bappala, A.P., and Konireddy, H.R., Thermal Energy Storage System using Phase Change Materials-Constant Heat Source, Thermal Sci., vol. 16, pp. 1097-1104,2012.

  14. Sharma, A, Tyagi, V.V., Chen, C.R., and Buddhi, D., Review on Thermal Energy Storage with Phase Change Materials and Applications, Renew. Sustain. Energy Rev, vol. 13, pp. 318-345,2009.

  15. Silakhori, M., Fauzi, H., Mahmoudian, M., Metselaar, H., and Mahlia, T., Preparation and Thermal Properties of Form-Stable Phase Change Materials Composed of Palmitic Acid/Polypyrrole/Graphene Nanoplatelets, Energy Build, vol. 99, pp. 189-195,2015.

  16. Tabassum, T., Hasan, M., and Latifa, B., Thermal Energy Storage through Melting of a Commercial Phase-Change Material in a Horizontal Cylindrical Annulus, J. Enhanced Heat Transf, vol. 25, pp. 211-237, 2018.

  17. Teng, T.P., Cheng, C.M., and Cheng, C.P., Performance Assessment of Heat Storage by Phase Change Materials Containing MWCNTs and Graphite, Appl. Therm. Eng., vol. 50, pp. 637-644,2013.

  18. Tian, Y. and Zhao, C.Y., A Numerical Investigation of Heat Transfer in Phase Change Materials (PCMs) Embedded in Porous Metals, Energy, vol. 36, pp. 5539-5546,2011.

  19. Wang, J.F., Xie, H.Q., and Xin, Z., Thermal Properties of Heat Storage Composites Containing Multiwalled Carbon Nanotubes, J. Appl. Phys, vol. 104,113537,2008.

  20. Wang, J.F., Xie, H.Q., and Xin, Z., Thermal Properties of Paraffin based Composites Containing Multi-Walled Carbon Nanotubes, Thermochimica Acta, vol. 488, pp. 39-42,2009.

  21. Wang, J.F., Xie, H.Q., Xin, Z., and Li, Y., Increasing the Thermal Conductivity of Palmitic Acid by the Addition of Carbon Nanotubes, Carbon, vol. 48, pp. 3979-3986,2010.

  22. Wang, J.F., Xie, H.Q., and Xin, Z., Investigation on Microstructure and Thermal Properties of Graphene-Nanoplatelet/Palmitic Acid Composites, J. Nanoparticle Res., vol. 14, p. 952,2012.

  23. Wen, R., Zhang, X., Huang, Z., Fang, M., and Liu, Y., Preparation and Thermal Properties of Fatty Acid/Diatomite Form-Stable Composite Phase Change Material for Thermal Energy Storage, Sol. Energy Mater. Sol. Cells, vol. 178, pp. 273-279,2018.

  24. Wang, Y., Chiao, S.M., Hung, T.F., and Yang, S.Y., Improvement in Toughness and Heat Resistance of Poly(Lactic Scid)/Polycarbonate Blend through Twin-Screw Blending: Influence of Compatibilizer Type, J. Appl. Polym. Sci., vol. 125, pp. E402-E412,2012.

  25. Zalba, B., Marin, J.M., Cabeza, L.F., and Mehling, H., Review on Thermal Energy Storage with Phase Change: Materials, Heat Transfer Analysis and Applications, Appl. Therm. Eng., vol. 23, pp. 251-283, 2003.

  26. Zhang, X., Li, M., Shi, W., Wang, B., and Li, X., Experimental Investigation on Charging and Discharging Performance of Absorption Thermal Energy Storage System, Energy Convers. Manage, vol. 85, pp. 425-434,2014.

  27. Zhang, Y.W. and Faghri, A., Heat Transfer Enhancement in Latent Heat Thermal Energy Storage System, J. Enhanced Heat Transf., vol. 24, pp. 173-181,2017.

  28. Zhao, C.Y., Lu, W., and Tian, Y., Heat Transfer Enhancement for Thermal Energy Storage using Metal Foams Embedded within Phase Change Materials (PCMs), Sol. Energy, vol. 84, pp. 1402-1412, 2010.

  29. Zhao, W.H., Neti, S., and Oztekin, A., Heat Transfer Analysis of Encapsulated Phase Change Materials, Appl. Therm. Eng, vol. 50, pp. 143-151,2013.


Articles with similar content:

MECHANICAL PROPERTIES AND DIFFUSION BEHAVIOR OF CARBON FIBER-REINFORCED PEEK ON EXPOSURE TO HEAT AND WATER
Composites: Mechanics, Computations, Applications: An International Journal, Vol.10, 2019, issue 4
Mohamed El Amine Belouchrani, Toufik Saoudi
EFFECT OF POROUS ADDITIVES ON PROPERTIES OF THE ATTAPULGITE-BASED CaCl2 COMPOSITES FOR COOLING APPLICATIONS
Journal of Porous Media, Vol.14, 2011, issue 4
X. J. Chen, Q. Cui, Y. Tang, X. L. Yao, Hai-Jun Chen, H. Q. Yao, L. L. Sheng, K. Zheng
THE PERFORMANCE INVESTIGATION OF HYDROPHILIC MATERIALS MODIFIED LiOH·H2O BASED COMPOSITE THERMOCHEMICAL MATERIALS FOR LOW TEMPERATURE THERMAL ENERGY STORAGE
International Heat Transfer Conference 16, Vol.5, 2018, issue
Shijie Li, Jun Li , Huhetaoli, Hongyu Huang , Noriyuki Kobayashi, Zhaohong He, Yu Bai
EXPERIMENTAL AND ANALYTICAL INVESTIGATIONS OF THERMOPHYSICAL PROPERTIES OF NANOFLUIDS
International Heat Transfer Conference 13, Vol.0, 2006, issue
Kai Choong Leong, Charles Yang, Sohel Murshed
THERMAL CONDUCTIVITY MEASUREMENTS OF Al2O3/WATER NANOFLUIDS USING TIME-DOMAIN THERMOREFLECTANCE METHOD AND HOT WIRE METHOD
International Heat Transfer Conference 16, Vol.24, 2018, issue
Xinwei Wang, Zhongyin Zhang, Weidong Xu, Meiling Zhou, Fangyuan Sun