Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Journal of Enhanced Heat Transfer
Impact-faktor: 0.562 5-jähriger Impact-Faktor: 0.605 SJR: 0.175 SNIP: 0.361 CiteScore™: 0.33

ISSN Druckformat: 1065-5131
ISSN Online: 1026-5511

Volumes:
Volumen 26, 2019 Volumen 25, 2018 Volumen 24, 2017 Volumen 23, 2016 Volumen 22, 2015 Volumen 21, 2014 Volumen 20, 2013 Volumen 19, 2012 Volumen 18, 2011 Volumen 17, 2010 Volumen 16, 2009 Volumen 15, 2008 Volumen 14, 2007 Volumen 13, 2006 Volumen 12, 2005 Volumen 11, 2004 Volumen 10, 2003 Volumen 9, 2002 Volumen 8, 2001 Volumen 7, 2000 Volumen 6, 1999 Volumen 5, 1998 Volumen 4, 1997 Volumen 3, 1996 Volumen 2, 1995 Volumen 1, 1994

Journal of Enhanced Heat Transfer

DOI: 10.1615/JEnhHeatTransf.2019027787
pages 365-392

DESIGN AND PERFORMANCE OF A MICROCHANNEL SUPERCRITICAL CARBON DIOXIDE RECUPERATOR WITH INTEGRATED HEADER ARCHITECTURE

Cameron Naderi
Murray Company, San Leandro, California, USA
Erfan Rasouli
Western Cooling Efficiency Center, University of California, Davis, California, USA
Vinod Narayanan
Department of Mechanical and Aerospace Engineering, University of California-Davis, Davis, California 95616, USA
Christian Horend
RWTH Aachen University, 52056 Aachen, Germany

ABSTRAKT

Supercritical carbon dioxide (sCO2) power cycles have gained attention due to the relatively high efficiency and potential for simple controls. Because the temperature drop across the turbine is fairly low in sCO2 cycles, heat recuperation is key to high cycle efficiency. In this paper, an integrated header microchannel (IHM) recuperator design is proposed for the sCO2 power cycle. The recuperator consists of multiple short unit cells connected together by a series of flow headers to inlet and exit plena. Within each unit cell, sCO2 flows through a microscale pin-fin array on the hot and cold sides. The thermal-fluidic performance of a representative three-layered unit cell stack is experimentally characterized. Three-dimensional computational fluid dynamics and structural analysis simulations are performed to develop the unit cell design. Experimental results indicate that effectiveness in the range of 84−95% can be achieved for a unit cell length of 18 cm and a heat capacity rate ratio ranging from 0.35 to 1. The experimentally determined overall heat transfer coefficient and pressure drop are compared against correlations in literature. The Prasher et al. [J. Heat Transfer, vol. 129, no. 2, pp. 141−153, 2007] correlation predicts the experimental pressure drop to within 9%. No heat transfer correlation was found to predict the experimental data well, with the Rasouli et al. [Int. J. Heat Mass Transfer, vol. 118, pp. 416−428, 2018] correlation showing the lowest mean average error of 29%. A heat exchanger model is developed based on the Prasher et al. and Rasouli et al. correlations. The model is integrated within a single recuperator sCO2 cycle model to assess the impact of the IHM recuperator on the cycle efficiency.

REFERENZEN

  1. Ahn, Y, Bae, S.J., Kim, M., Cho, S.K., Baik, S., Lee, J.I., and Cha, J.E., Review of Supercritical CO<sub>2</sub> Power Cycle Technology and Current Status of Research and Development, Nucl. Eng. Technol., vol. 47, pp. 647-661,2015.

  2. American Iron and Steel Institute (AISI), High Temperature Characteristics of Stainless Steels, A Designer's Handbook Series No. 9004, accessed July 26, 2018, from https://www.nickelinstitute.org/en/ TechnicalLibrary/AISI/9004_High_TemperatureCharacteristicsolStainlessSteel.aspx, 2018.

  3. Bergman, T.L., Lavine, A.S., Incropera, F.P., and DeWitt, D.P., Fundamentals of Heat and Mass Transfer, 7th ed., Hoboken, NJ: John Wiley and Sons, 2011.

  4. Brandner, J., Bohn, L., Henning, T., Schygulla, U., and Schubert, K., Microstructure Heat Exchanger Applications in Laboratory and Industry, Heat Transf. Eng., vol. 28, pp. 761-771,2007.

  5. Brun, K., Friedman, P., and Dennis, R., Eds., Fundamentals and Applications of Supercritical Carbon Dioxide (sCO<sub>2</sub>) Based Power Cycles, 1sted.,UK: Woodhead Publishing, 2017.

  6. Carlson, M.D., Kruizenga, A.K., Schalansky, C., and Fleming, D.F., Sandia Progress on Advanced Heat Exchangers for sCO<sub>2</sub> Brayton Cycles, Proc. of the 4th Intl. Symp. on Supercritical CO<sub>2</sub> Power Cycles, Pittsburgh, PA, September 9-10, 2014.

  7. Chen, M., Sun, X., Christensen, R.N., Skavdahl, I., Utgikar, V, and Sabharwall, P., Pressure Drop and Heat Transfer Characteristics of a High Temperature Printed Circuit Heat Exchanger, Appl. Therm. Eng., vol. 108, pp. 1409-1417,2016.

  8. Fourspring, P.M., Nehrbauer, J.P., Sullivan, S., and Nash, J., Testing of Compact Recuperators for a Supercritical CO<sub>2</sub> Brayton Power Cycle, Proc. of the 4th Intl. Symp. on Supercritical CO<sub>2</sub> Power Cycles, Pittsburgh, PA, September 9-10, 2014.

  9. Irwin, L. and Moullec, Y.L., Turbines Can Use CO<sub>2</sub> to Cut CO<sub>2</sub>, Science, vol. 356, no. 6340, pp. 805-806, 2017.

  10. Karagiannidis, S. and Mantzaras, J., Numerical Investigation on the Start-Up of Methane-Fueled Catalytic Microreactors, Combust. Flame, vol. 157, pp. 1400-1413,2010.

  11. Kim, H. and No, C., Thermal Hydraulic Performance Analysis of a Printed Circuit Heat Exchanger Using a Helium-Water Test Loop and Numerical Simulations, Appl. Therm. Eng., vol. 31, pp. 4064-4073, 2011.

  12. Kockmann, N., Transport Phenomena in MicroProcess Engineering, Berlin, Germany: Springer Publishing Group, 2008.

  13. Le Pierres, R., Southall, D., and Osborne, S., Impact of Mechanical Design on Printed Circuit Heat Exchangers, Proc. of the 2011 SCO<sub>2</sub> Power Cycle Symp., University of Colorado Boulder, May 24-25, 2011.

  14. Li, X., Le Pierres, R., and Dewson, S.J., Heat Exchangers for the Next Generation of Nuclear Reactors, Paper 6105, Proc. ICAPP 2006, Reno, NV, 2006.

  15. Li, X., Kinninmont, D., Le Pierres, R., and Dewson, S.J., Alloy 617 for the High Temperature Diffusion- bonded Compact Heat Exchangers, Paper 8008, Proc. ICAPP 2008, Anaheim, CA, USA, June 8-12, 2008.

  16. Meshram, A., Jaiswal, A.K., Khivsara, S.D., Ortega, J.D., Ho, C., Bapat, R., and Dutta, P., Modeling and Analysis of a Printed Circuit Heat Exchanger for Supercritical CO<sub>2</sub> Power Cycle Applications, Appl. Therm. Eng., vol. 109, pp. 861-870,2016.

  17. Moffat, R., Describing the Uncertainties in Experimental Results, Exp. Therm. Fluid Sci., vol. 1, no. 1, pp. 3-17,1988.

  18. Moores, K.A. and Joshi, Y.K., Effect of Tip Clearance on the Thermal and Hydrodynamic Performance of a Shrouded Pin Fin Array, J. Heat Transf., vol. 125, no. 6, pp. 999-1006,2003.

  19. Mylavarapu, S.K., Sun, X., Christensen, R.N., Unocic, R.R., Glosup, R.E., and Patterson, M.W., Fabrication and Design Aspects of High-temperature Compact Diffusion Bonded Heat Exchangers, Nucl. Eng. Des., vol. 249, pp. 49-56,2012.

  20. Naderi, C., Experimental Study of Micro Pin-Fin Heat Sinks and Supercritical Carbon Dioxide Microchannel Heat Exchanger, MS, University of California Davis, 2017.

  21. Narayanan, V, Liburdy, J., and Pence, D., Thermal Applications of Microchannel Flows, in Encyclopedia of Aerospace Engineering, R. Blockley and W. Shyy, Eds., Chichester, UK: John Wiley, 2013.

  22. Ngo, T.L., Kato, Y., Nikitin, K., and Ishizuka, T., Heat Transfer and Pressure Drop Correlations of Microchannel Heat Exchangers with S-Shaped and Zig-Zag Fins for Carbon Dioxide Cycles, Exp. Therm. Fluid Sci., vol. 32, pp. 560-570, 2007.

  23. Nikitin, K., Kato, Y., and Ngo, L., Printed Circuit Heat Exchanger Thermal-Hydraulic Performance in Supercritical CO2 Experimental Loop, Int. J. Refrig., vol. 29, pp. 807-814, 2006.

  24. Peles, Y., Kosar, A., Mishra, C., Kuo, C.J., and Schneider, B., Forced Convective Heat Transfer across a Pin Fin Micro Heat Sink, Int. J. Heat Mass Transf., vol. 48, no. 17, pp. 3615-3627, 2005.

  25. Prasher, R.S., Dimer, J., Chang, J.Y., Myers, Chau, A.D., He, D., and Prstic, S., Nusselt Number and Friction Factor of Staggered Arrays of Low Aspect Micropin-Fins under Cross Flow for Water as Fluid, J. Heat Transf., vol. 129, no. 2, pp. 141-153, 2007.

  26. Rasouli, E., Naderi, C., and Narayanan, V, Pitch and Aspect Ratios Effects on Single-Phase Heat Transfer through Microscale Pin Fin Heat Sinks, Int. J. Heat Mass Transf., vol. 118, pp. 416-428,2018.

  27. Short, B.E., Raad, PE., and Price, D.C., Performance of Pin Fin Cast Aluminum Cold Walls. Part 2: Colburn J-Factor Correlations, Thermophys. Heat Transf., vol. 16, pp. 397-403,2002a.

  28. Short, B.E., Raad, P.E., and Price, D.C., Performance of Pin Fin Cast Aluminum Cold Walls, Part. 1: Friction Factor Correlations, J. Thermophys. Heat Transf., vol. 16, no. 3,pp. 389-396,2002b.

  29. Tonkovich, A.Y., Perry, S., Wang, Y., Qiu, D., LaPlante, T., and Rogers, W.A., Microchannel Process Technology for Compact Methane Steam Reforming, Chem. Eng. Sci., vol. 59, pp. 4819-4824,2004.

  30. Tsuzuki, N., Kato, Y., and Ishiduka, T., High Performance Printed Circuit Heat Exchanger, Appl. Therm. Eng., vol. 27, pp. 1702-1707,2007.

  31. Tuckerman, D.B., Heat-Transfer Microstructures for Integrated Circuits, PhD, Stanford University, CA, 1984.

  32. Tuckerman, D.B. and Pease, R.F.W., High-Performance Heat Sinking for VLSI, IEEE Electron Devices Lett., vol. EDL-2, no. 5,pp. 126-129,1981.

  33. Turchi, C.S., Ma, Z., Neises, T.W., and Wagner, M.J., Thermodynamic Study of Advanced Supercritical Carbon Dioxide Power Cycles for Concentrating Solar Power Systems, J. Solar Energy Eng., vol. 135, paper 041007-1,2013.

  34. Zukauskas, A., Heat Transfer from Tubes in Crossflow, Adv. Heat Transf. vol. 8, New York: Academic, pp. 93-160,1972.

  35. Zukauskas, A. and Ulinskas, R., Single-Phase Fluid Flow: Banks of Plain and Finned Tubes, in Heat Exchanger Design Handbook, E.U. Schlunder, Eds., New York: Washington Hemisphere Publishing, Chap. 2.2.4,1983.


Articles with similar content:

THERMODYNAMIC AND HEAT TRANSFER ANALYSES OF THE S−CO2 BRAYTON CYCLE AS THE HEAT TRANSPORT SYSTEM OF A NUCLEAR REACTOR
Heat Transfer Research, Vol.47, 2016, issue 10
Yiding Cao, Shiqiu Gao, Lian Hu, Deqi Chen
Flow and Heat Transfer Characteristics of a Helically Coiled Heat Exchanger Using Different Turbulence Models
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2012, issue
Wei-Cheng Lin, Ching-Chang Chieng, Yuh-Ming Ferng
Analysis of Regenerative Thermal Storage Geometries for Solar Gas Turbines
International Heat Transfer Conference 15, Vol.45, 2014, issue
Peter Klein, John Sheer, Thomas H. Roos
ANALYSIS OF SORPTION CYCLES WITH INTEGRATED ABSORBER−EVAPORATORS
Heat Transfer Research, Vol.46, 2015, issue 3
H. Saidani-Scott, Michael J. Tierney, R. Selwyn
LENGTHS OF BUBBLE AND SLUG AND PRESSURE DROP IN GASLIQUID SLUG FLOW IN MICROCHANNELS
Multiphase Science and Technology, Vol.24, 2012, issue 3
Satoshi Shimokawa, Akimaro Kawahara, Michio Sadatomi