Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Journal of Enhanced Heat Transfer
Impact-faktor: 1.406 5-jähriger Impact-Faktor: 1.075 SJR: 0.287 SNIP: 0.653 CiteScore™: 1.2

ISSN Druckformat: 1065-5131
ISSN Online: 1563-5074

Volumes:
Volumen 27, 2020 Volumen 26, 2019 Volumen 25, 2018 Volumen 24, 2017 Volumen 23, 2016 Volumen 22, 2015 Volumen 21, 2014 Volumen 20, 2013 Volumen 19, 2012 Volumen 18, 2011 Volumen 17, 2010 Volumen 16, 2009 Volumen 15, 2008 Volumen 14, 2007 Volumen 13, 2006 Volumen 12, 2005 Volumen 11, 2004 Volumen 10, 2003 Volumen 9, 2002 Volumen 8, 2001 Volumen 7, 2000 Volumen 6, 1999 Volumen 5, 1998 Volumen 4, 1997 Volumen 3, 1996 Volumen 2, 1995 Volumen 1, 1994

Journal of Enhanced Heat Transfer

DOI: 10.1615/JEnhHeatTransf.2019029230
pages 277-294

PERISTALTIC MOTION OF NON-NEWTONIAN FLUID WITH VARIABLE LIQUID PROPERTIES IN A CONVECTIVELY HEATED NONUNIFORM TUBE: RABINOWITSCH FLUID MODEL

Hanumesh Vaidya
Department of Mathematics, SSA Government First Grade College (Autonomous), Ballari-583101, Karnataka, India
C. Rajashekhar
Department of Mathematics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
Gudekote Manjunatha
Department of Mathematics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India-576104
K. V. Prasad
Department of Mathematics, Vijayanagara Sri Krishnadevaraya University Jnana Sagara Campus,Vinayaka Nagar Cantonment, Ballari-583 105, Karnataka, India
Oluwole Daniel Makinde
Faculty of Military Science, Stellenbosch University, Private Bag X2, Saldanha 7395, South Africa
S. Sreenadh
Department of Mathematics, Sri Venkateswara University, Tirupati, Andhra Pradesh, India-517502

ABSTRAKT

This paper investigates the effects of variation in viscosity and thermal conductivity on the peristaltic mechanism of Rabinowitsch fluid through a nonuniform tube. The convective surface conditions and wall properties are taken into account. The governing equations of motion, momentum, and energy are rendered dimensionless and are solved using long wavelength and small Reynolds number approximations. The series solution technique is employed to solve the resulting nonlinear temperature equation. The effects of relevant parameters on physiological quantities of interest are analyzed graphically, and the validation of the present model with the existing literature has been presented through graphs. The outcomes of the study reveal that an increase in the value of variable viscosity and thermal conductivity enhances the velocity and temperature profiles for dilatant, Newtonian, and pseudoplastic fluid models. Further, an increase in the value of variable viscosity enhances the skin friction coefficient and Nusselt number. Moreover, the presence of variable viscosity diminishes the volume of the trapped bolus.

REFERENZEN

  1. Akbar, N.S. and Nadeem, S., Application of Rabinowitsch Fluid Model in Peristalsis, Z. Naturforsch. A, vol. 69, pp. 473-480,2014.

  2. Gratton, L.J., Travkin, V.S., and Catton, I., Morphology: Two-Temperature Statements for Convective Transport in Porous Media, J. Enhanced Heat Transf, vol. 24, pp. 1-6, 2017.

  3. Hanumesh, V., Manjunatha, G., Rajashekhar, C., and Prasad, K.V., Role of Slip and Heat Transfer on Peristaltic Transport of Herschel-Bulkley Fluid through an Elastic Tube, Multidisc. Model. Mater. Struct., vol. 14, pp. 940-959,2018.

  4. Hayat, T., Farooq, S., Ahmad, B., and Alsaedi, A., Consequences of Variable Thermal Conductivity and Activation Energy on Peristalsis in Curved Configuration, J. Mol. Liquid, vol. 263, pp. 258-267, 2018.

  5. Hayat, T., Javed, M., and Ali, N., MHD Peristaltic of a Jeffery Fluid in a Channel with Compliant Walls and Porous Space, Transp. Porous Medium, vol. 74, pp. 259-274, 2008.

  6. Hayat, T., Nawaz, S., Alsaedi, A., and Rafiq, M., Influence of Radial Magnetic Field on the Peristaltic Flow of Williamson Fluid in a Curved Compliant Walls Channel, Results Phys., vol. 7, pp. 982-990, 2017.

  7. Hayat. T., Batool, N., Yasmin, H., Alsaedi, A., and Ayub, M., Peristaltic Flow of Williamson Fluid in a Convected Walls Channel with Soret and Dufour Effects, Int. J. Biomathemat., vol. 9, p. 1650012,2016.

  8. Javed, M., Hayat, T., and Alsaedi, A., Peristaltic Flow of Burgers' Fluid with Compliant Walls and Heat Transfer, Appl. Mathemat. Comput., vol. 244, pp. 654-671, 2014.

  9. Khan, A.M., Ellahi, R., and Usman, M., The Effects of Variable Viscosity on the Peristaltic Flow of Non-Newtonian Fluid through Porous Medium in an Inclined Channel with Slip Boundary Conditions, J. Porous Media, vol. 16, pp. 59-67, 2013.

  10. Kim, E., Laminar Natural Convection along a Wavy Vertical Plate with Uniform Heat Flux in Non-Newtonian Fluids, J. Enhanced Heat Transf, vol. 5, pp. 91-99, 1998.

  11. Kothandapani, M. and Prakash, J., Convective Boundary Conditions Effect on Peristaltic Flow of a MHD Jeffery Nanofluid, Appl. Nanosci., vol. 6, pp. 323-335, 2016.

  12. Latha, R., Kumar, B.R., and Makinde, O.D., Effects of Heat Dissipation on the Peristaltic Flow of Jeffery and Newtonian Fluid through an Asymmetric Channel with Porous Medium, Defect Diffus. Forum, vol. 387, pp. 218-243,2018a.

  13. Latha, R., Kumar, B.R., and Makinde, O.D., Peristaltic Flow of Couple Stress Fluid in an Asymmetric Channel with Partial Slip, Defect Diffusion Forum, vol. 387, pp. 385-402, 2018b.

  14. Latham, T.W., Fluid Motion in a Peristaltic Pump, MS, Massachusetts Institute of Technology, Cambridge, MA, 1966.

  15. Manjunatha, G. and Rajashekhar, C., Slip Effects on Peristaltic Transport of Casson Fluid in an Inclined Elastic Tube with Porous Walls, J. Adv. Res. Fluid Mechan. Thermal Sci., vol. 43, pp. 67-80, 2018.

  16. Moghari, M., A Numerical Study of Non-Equillibrium Convective Heat Transfer in Porous Media, J. Enhanced Heat Transf, vol. 15, pp. 81-99, 2008.

  17. Nadeem, S. and Akbar, N.S., Influence of Heat Transfer and Variable Viscosity in Vertical Porous Annulus with Peristalsis, J. Porous Media, vol. 14, pp. 849-863, 2011.

  18. Oudina, F.M. and Bessaih, R., Numerical Modelling of MHD Stability in a Cylindrical Configuration, J. Franklin Institute, vol. 351, pp. 667-681, 2014.

  19. Oudina, F.M. and Bessaih, R., Oscillatory Magnetohydrodynamic Natural Convection of Liquid Metal between Vertical Coaxial Cylinders, J. Appl. FluidMechan., vol. 9, pp. 1655-1665,2016.

  20. Oudina, F.M. and Makinde, O.D., Numerical Simulation of Oscillatory MHD Natural Convection in Cylindrical Annulus: Prandtl Number Effect, Defect Diffus. Forum, vol. 387, pp. 417-427,2018.

  21. Prasad, K.V., Vaidya, H., and Vajravelu, K., MHD Mixed Convection Heat Transfer over a Non-Linear Slender Elastic Sheet with Variable Fluid Properties, Appl. Mathemat. Nonlinear Sci., vol. 2, pp. 351-366, 2017.

  22. Prasad, K.V., Vajravelu, K., Vaidya, H., Basha, N.Z., and Umesh, V., Thermal and Species Concentration of MHD Casson Fluid at a Vertical Sheet in the Presence of Variable Fluid Properties, Ain Shams Eng. J, vol. 9, pp. 1763-1779, 2018.

  23. Rajashekhar, C., Manjunatha, G., Prasad, K.V., Baliga, B.B., and Hanumesh, V., Peristaltic Transport of Two-Layered Blood Flow Using Herschel-Bulkley Model, Cogent Eng., vol. 5, pp. 1-16,2018.

  24. Reddy, M.G., Prasannakumara, B.C., and Makinde, O.D., Cross Diffusion Impacts on Hydromagnetic Radiative Peristaltic Carreau-Casson Nanofluids Flow in an Irregular Channel, Defect Diffus. Forum, vol. 377, pp. 62-83,2017.

  25. Sadaf, H. and Nadeem, S., Analysis of Combined Convective and Viscous Dissipation Effects for Peristaltic Flow Rabinowitsch Fluid Model, J. BionicEng, vol. 14, pp. 182-190, 2017.

  26. Saravana, R., Vajravelu, K., and Sreenadh, S., Influence of Compliant Walls and Heat Transfer on the Peristaltic Transport of a Rabinowitsch Fluid in an Inclined Channel, Z. Naturforsch. A, vol. 73, pp. 833-843,2018.

  27. Sinha, A., Shit, G.C., and Ranjit, N.K., Peristaltic Transport of MHD Flow and Heat Transfer in an Asymmetric Channel: Effects of Variable Viscosity, Velocity-Slip and Temperature Jump, Alexandria Eng. J, vol. 54, pp. 691-704,2015.

  28. Vaidya, H., Rajashekhar, C., Manjunatha G., and Prasad, K.V., Peristaltic Mechanism of a Rabinowitsch Fluid in an Inclined Channel with Compliant Wall and Variable Liquid Properties, J. Braz. Soc. Mech. Sci. Eng., vol. 41, p. 52, 2019.

  29. Vajravelu, K., Prasad, K.V., Chiu-On, N., and Vaidya, H., MHD Squeeze Flow and Heat Transfer of a Nanofluid between Parallel Disks with Variable Fluid Properties and Transpiration, Int. J. Mechan. Mater. Eng., vol. 12, p. 9, 2017.

  30. Wada, S. and Hayashi, H., Hydrodynamic Lubrication of Journal Bearings by Pseudoplastic Lubricants, Bull. JSME, vol. 69, pp. 268-278, 1971.

  31. Wakif, A., Bolulahia, Z., and Sehaqui, R., Numerical Analysis of the Onset of Longitudinal Convective Rolls in a Porous Medium Saturated by an Electrically Conductiong Nanofluid in the Presence of External Magnetic Field, Results Phys., vol. 7, pp. 2134-2152, 2017.

  32. Wakif, A., Boulahia, Z., and Sehaqui, R., A Semianalytical Analysis of Electro-Thermo-Hydrodynamic Stability in Dielectric Nanofluids Using Buongiorno's Mathematical Model Together with More Realistic Boundary Conditions, Results Phys, vol. 9, pp. 1438-1454, 2018a.

  33. Wakif, A., Boulahia, Z., Ali, F., Eid, M.R., and Sehaqui, R., Numerical Analysis of the Unsteady Natural Convection MHD Couette Nanofluid Flow in the Presence of Thermal Radiation Using Single and Two-Phase Nanofluid Models for Cu-Water Nanofluids, Int. J. Appl. Comput. Mathemat., vol. 4, p. 81,2018b.

  34. Wakif, A., Boulahia, Z., Mishra, S.R., Rashidi, M.M., and Sehaqui, R., Influence of a Uniform Transverse Magnetic Field on the Thermo-Hydrodynamic Stability in Water-Based Nanofluids with Metallic Nanoparticles Using the Generalized Buongiorno's Mathematical Model, Eur. J. Plus, vol. 133, p. 181, 2018c.


Articles with similar content:

PERISTALTIC MECHANISM OF BINGHAM LIQUID IN A CONVECTIVELY HEATED POROUS TUBE IN THE PRESENCE OF VARIABLE LIQUID PROPERTIES
Special Topics & Reviews in Porous Media: An International Journal, Vol.10, 2019, issue 2
Gudekote Manjunatha, C. Rajashekhar, Hanumesh Vaidya, K. V. Prasad
FORCED CONVECTION IN MHD SLIP FLOW OF ALUMINA-WATER NANOFLUID OVER A FLAT PLATE
Journal of Enhanced Heat Transfer, Vol.23, 2016, issue 6
Padam Singh, Manoj Kumar, Alok Kumar Pandey
NUMERICAL STUDY ON MIXED CONVECTION IN A POWER-LAW FLUID SATURATED POROUS MEDIUM WITH VARIABLE PROPERTIES AND THERMOPHORESIS EFFECTS VIA LIE SCALING GROUP TRANSFORMATIONS
Computational Thermal Sciences: An International Journal, Vol.10, 2018, issue 6
G. Venkata Suman, Janapatla Pranitha, D. Srinivasacharya
Non-Darcian and thermal radiation effects on Magnetoconvection flow of Two-immiscible fluids with heat transfer
Proceedings of the 24th National and 2nd International ISHMT-ASTFE Heat and Mass Transfer Conference (IHMTC-2017), Vol.0, 2017, issue
S. Srinivas, D. Lourdu Immaculate, Anant Kant Shukla, R. Muthuraj
A NUMERICAL STUDY OF NANOFLUID FLOW OVER A POROUS VERTICAL PLATE WITH INTERNAL HEAT GENERATION AND NONLINEAR THERMAL RADIATION
Journal of Porous Media, Vol.23, 2020, issue 6
Hiranmoy Mondal, Sicelo Goqo, Precious Sibanda, Poulomi De