Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
International Journal for Uncertainty Quantification
Impact-faktor: 3.259 5-jähriger Impact-Faktor: 2.547 SJR: 0.417 SNIP: 0.8 CiteScore™: 1.52

ISSN Druckformat: 2152-5080
ISSN Online: 2152-5099

Offener Zugang

International Journal for Uncertainty Quantification

DOI: 10.1615/Int.J.UncertaintyQuantification.2014006730
pages 479-510

GRADIENT-BASED STOCHASTIC OPTIMIZATION METHODS IN BAYESIAN EXPERIMENTAL DESIGN

Xun Huan
Sandia National Laboratories, 7011 East Ave, MS 9051, Livermore, CA 94550, USA; Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
Youssef Marzouk
Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 77 Massachusetts Ave, Room 33-305 Cambridge, MA 02139 USA

ABSTRAKT

Optimal experimental design (OED) seeks experiments expected to yield the most useful data for some purpose. In practical circumstances where experiments are time-consuming or resource-intensive, OED can yield enormous savings. We pursue OED for nonlinear systems from a Bayesian perspective, with the goal of choosing experiments that are optimal for parameter inference. Our objective in this context is the expected information gain in model parameters, which in general can only be estimated using Monte Carlo methods. Maximizing this objective thus becomes a stochastic optimization problem. This paper develops gradient-based stochastic optimization methods for the design of experiments on a continuous parameter space. Given a Monte Carlo estimator of expected information gain, we use infinitesimal perturbation analysis to derive gradients of this estimator.We are then able to formulate two gradient-based stochastic optimization approaches: (i) Robbins-Monro stochastic approximation, and (ii) sample average approximation combined with a deterministic quasi-Newton method. A polynomial chaos approximation of the forward model accelerates objective and gradient evaluations in both cases.We discuss the implementation of these optimization methods, then conduct an empirical comparison of their performance. To demonstrate design in a nonlinear setting with partial differential equation forward models, we use the problem of sensor placement for source inversion. Numerical results yield useful guidelines on the choice of algorithm and sample sizes, assess the impact of estimator bias, and quantify tradeoffs of computational cost versus solution quality and robustness.


Articles with similar content:

COMPUTING GREEN'S FUNCTIONS FOR FLOW IN HETEROGENEOUS COMPOSITE MEDIA
International Journal for Uncertainty Quantification, Vol.3, 2013, issue 1
David A. Barajas-Solano, Daniel M. Tartakovsky
POLYNOMIAL CHAOS FOR SEMIEXPLICIT DIFFERENTIAL ALGEBRAIC EQUATIONS OF INDEX 1
International Journal for Uncertainty Quantification, Vol.3, 2013, issue 1
Roland Pulch
IDENTIFYING MATERIAL PARAMETERS FOR A MICRO-POLAR PLASTICITY MODEL VIA X-RAY MICRO-COMPUTED TOMOGRAPHIC (CT) IMAGES: LESSONS LEARNED FROM THE CURVE-FITTING EXERCISES
International Journal for Multiscale Computational Engineering, Vol.14, 2016, issue 4
Ghonwa Khaddour, SeonHong Na, Simon Salager, Kun Wang, WaiChing Sun
STATISTICAL SURROGATE MODELS FOR PREDICTION OF HIGH-CONSEQUENCE CLIMATE CHANGE
International Journal for Uncertainty Quantification, Vol.3, 2013, issue 4
Richard V. Field Jr., Paul Constantine, M. Boslough
POLYNOMIAL-CHAOS-BASED KRIGING
International Journal for Uncertainty Quantification, Vol.5, 2015, issue 2
Joe Wiart, Bruno Sudret, Roland Schobi