Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
International Journal for Uncertainty Quantification
Impact-faktor: 4.911 5-jähriger Impact-Faktor: 3.179 SJR: 1.008 SNIP: 0.983 CiteScore™: 5.2

ISSN Druckformat: 2152-5080
ISSN Online: 2152-5099

Offener Zugang

International Journal for Uncertainty Quantification

DOI: 10.1615/Int.J.UncertaintyQuantification.2013006809
pages 205-223

IMPROVEMENTS TO GRADIENT-ENHANCED KRIGING USING A BAYESIAN INTERPRETATION

Jouke H.S. de Baar
TU Delft, Kluyverweg 1 (10.18), 2629 HS Delft, The Netherlands
Richard P. Dwight
Aerodynamics Group, Faculty of Aerospace, TU Delft, P.O. Box 5058, 2600GB Delft, The Netherlands
Hester Bijl
TU Delft, Kluyverweg 1 (10.18), 2629 HS Delft, The Netherlands

ABSTRAKT

Cokriging is a flexible tool for constructing surrogate models on the outputs of computer models. It can readily incorporate gradient information, in which form it is named gradient-enhanced Kriging (GEK), and promises accurate surrogate models in >10 dimensions with a moderate number of sample locations for sufficiently smooth responses. However, GEK suffers from several problems: poor robustness and ill-conditionedness of the surface. Furthermore it is unclear how to account for errors in gradients, which are typically larger than errors in values. In this work we derive GEK using Bayes' Theorem, which gives an useful interpretation of the method, allowing construction of a gradient-error contribution. The Bayesian interpretation suggests the "observation error" as a proxy for errors in the output of the computer model. From this point we derive analytic estimates of robustness of the method, which can easily be used to compute upper bounds on the correlation range and lower bounds on the observation error. We thus see that by including the observation error, treatment of errors and robustness go hand in hand. The resulting GEK method is applied to uncertainty quantification for two test problems.


Articles with similar content:

ADAPTIVE SAMPLING WITH TOPOLOGICAL SCORES
International Journal for Uncertainty Quantification, Vol.3, 2013, issue 2
Dan Maljovec, Valerio Pascucci, Bei Wang, Ana Kupresanin, Gardar Johannesson, Peer-Timo Bremer
DIMENSIONALITY REDUCTION FOR COMPLEX MODELS VIA BAYESIAN COMPRESSIVE SENSING
International Journal for Uncertainty Quantification, Vol.4, 2014, issue 1
Bert J. Debusschere, Habib N. Najm, Peter Thornton, Cosmin Safta, Khachik Sargsyan, Daniel Ricciuto
A MULTI-FIDELITY NEURAL NETWORK SURROGATE SAMPLING METHOD FOR UNCERTAINTY QUANTIFICATION
International Journal for Uncertainty Quantification, Vol.10, 2020, issue 4
Mohammad Motamed
FAST AND FLEXIBLE UNCERTAINTY QUANTIFICATION THROUGH A DATA-DRIVEN SURROGATE MODEL
International Journal for Uncertainty Quantification, Vol.8, 2018, issue 2
Gerta Köster, Hans-Joachim Bungartz, Felix Dietrich, Tobias Neckel, Florian Künzner
VPS: VORONOI PIECEWISE SURROGATE MODELS FOR HIGH-DIMENSIONAL DATA FITTING
International Journal for Uncertainty Quantification, Vol.7, 2017, issue 1
Marta D'Elia, Mohamed S. Ebeida, Ahmad Rushdi, Eric T. Phipps, Laura P. Swiler