Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
International Journal for Uncertainty Quantification
Impact-faktor: 4.911 5-jähriger Impact-Faktor: 3.179 SJR: 1.008 SNIP: 0.983 CiteScore™: 5.2

ISSN Druckformat: 2152-5080
ISSN Online: 2152-5099

Offener Zugang

International Journal for Uncertainty Quantification

DOI: 10.1615/Int.J.UncertaintyQuantification.2019027680
pages 187-204


Liming Zhang
China University of Petroleum, Qingdao, Shandong 266580, China
Chenyu Cui
China University of Petroleum, Qingdao, Shandong 266580, China
Kai Zhang
China University of Petroleum, Qingdao, Shandong 266580, China
Yi Wang
Sinopec Research Institute of Petroleum Engineering, Beijing 100000, China
Zhixue Sun
School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
Jun Yao
School of Petroleum Engineering, China University of Petroleum (East China), No. 66 Changjiang West Road, Huangdao Zone, Qingdao City, Shandong Province, 266580 P.R. China
Qin Luo
Southwest Petroleum University, Chengdu 610000, China


The uncertainty of hydraulic fracture is high due to the complex geological features of which there is limited accurate understanding, and the limitations of the fracture diagnosis method. However, hydraulic fractures are one of the main driving forces for oilfields to improve economic benefit and important reference imformation for further development and adjustment of oilfields. Therefore, reducing fracture morphology uncertainty is a key challenge for the further development of oilfields. To improve this situation, we present a novel method based on the time-lapse (4D) seismic and discrete network deterministic inversion (DNDI) algorithm for mapping the geometry of hydraulic fracture. The time-lapse (4D) seismic method can provide spatial and dynamic change of reservoir; this information is used by DNDI to optimize fracture geometry continually, where the embedded discrete fracture model (EDFM) is implied to simulate reservoir production, and objective function is constructed using Bayesian theory for reaching iterative convergence quickly. An uncertainty analysis of results based on the posterior probability is also presented in this paper. Finally, this method has been validated in different scale study cases.


  1. Yang, Y.F., Liu, Z.H., Sun, Z.X., An, S., Zhang, W., Liu, P., Yao, J., and Ma, J., Research on Stress Sensitivity of Fractured Carbonate Reservoirs based on CT Technology, Energies, 10(11):1833, 2017.

  2. Chen, B.L., He, J., Wen, X.H., Chen, W., and Reynolds, A.C., Uncertainty Quantification and Value of Information Assessment Using Proxies and Markov Chain Monte Carlo Method for a Pilot Project, J. Petrol. Sci. Eng., 157:328-339,2017.

  3. Chen, B., Harp, D.R., Lin, Y., Keating, E.H., and Pawar, R.J., Geologic CO2 Sequestration Monitoring Design: A Machine Learning and Uncertainty Quantification based Approach, Appl. Energy, 225:332-345, 2018.

  4. Cipolla, C.L. and Wright, C.A., State-of-the-Art in Hydraulic Fracture Diagnostics, in Proc. ofSPEAsia Pacific Oil and Gas Conference and Exhibition, Dallas, TX: Society of Petroleum Engineers, 2000.

  5. Warpinski, N.R., Hydraulic Fracture Ddiagnostics, J. Petrol. Technol., 48(10):907-910,1996.

  6. Warpinski, N.R., Griffin, L.G., Davis, E.J., and Grant, T., Improving Hydraulic Fracture Diagnostics by Joint Inversion of Downhole Microseismic and Tiltmeter Data, in Proc. of SPE Annual Tech. Conf. and Exhibition, Dallas, TX: Society of Petroleum Engineers, 2006.

  7. Xu, Z., Zhang, B., Li, F., Cao, G., and Liu, Y., Well Logs Decomposition Using VMD in Assisting the Sequence Stratigraphic Analysis of a Conglomerate Reservoir, Geophysics, 83(4):1-28,2018.

  8. Wright, C.A., Davis, E.J., Weijers, L., Minner, W.A., Hennigan, C.M., and Golich, G.M., Horizontal Hydraulic Fractures: Oddball Occurrences or Practical Engineering Concern?, in Proc. of SPE Western Regional Meeting. Society of Petroleum Engineers, Dallas, TX: Society of Petroleum Engineers, 1997.

  9. Wright, C.A., Minner, W.A., Weijers, L., Davis, E.J., Golich, G.M., and Kikuchi, H., Wellbore-to-Fracture Communication Problems Pose Challenges in California Diatomite Horizontal Wells, SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers, 1997.

  10. Wright, C.A., Weijers, L., Davis, E.J., and Mayerhofer, M., Understanding Hydraulic Fracture Growth: Tricky but Not Hopeless, in Proc. of SPE Annual Tech. Conf. and Exhibition. Dallas: Society of Petroleum Engineers, 1999.

  11. Zhang, K., Ma, X.P., Li, Y., Wu, H., Cui, C., Zhang, X., Zhang, H., and Yao, J., Parameter Prediction of Hydraulic Fracture for Tight Reservoir based on Micro-Seismic and History Matching, Fractals, 26(2):1840009,2018.

  12. Zhang, K., Zhang, X.M., Zhang, L.M., Yao, J., and Yan, X., Inversion of Fractures based on Equivalent Continuous Medium Model of Fractured Reservoirs, J. Petrol. Sci. Eng., 151:496-506, 2017.

  13. Gosselin, O., Aanonsen, S.I., Aavatsmark, I., Cominelli, A., Gonard, R., Kolasinski, M., Ferdinandi, F., Kovacic, L., and Neylon, K., History Matching Using Time-lapse Seismic (HUTS), in Proc. of SPE Annual Tech. Conf. and Exhibition, Dallas, TX: Society of Petroleum Engineers, 2003.

  14. Lumley, D.E., Time-Lapse Seismic Reservoir Monitoring, Geophysics, 66(1):50-53, 2001.

  15. Stephen, K.D., Measuring the Value of Time-Lapse (4D) Seismic as Part of History Matching in the Schiehallion UKCS Field, in Proc. of ECMOR X-10th European Conference on the Mathematics of Oil Recovery, 2006.

  16. Tolstukhin, E., Lyngnes, B., and Sudan, H.H., Ekofisk 4D Seismic-Seismic History Matching Workflow, in Proc. of SPE Europec/EAGE Annual Conference, Society of Petroleum Engineers, 2012.

  17. Roggero, F., Lerat, O., Ding, D.Y., Berthet, P., Bordenave, C., Lefeuvre, F., and Perfetti, P., History Matching of Production and 4D Seismic Data: Application to the Girassol Field, Offshore Angola, Oil Gas Sci. Technol., 67(2):237-262, 2012.

  18. Lumley, D., 4D Seismic Monitoring of CO2 Sequestration, Leading Edge, 29(2):150-155, 2010.

  19. Ivanova, A., Kashubin, A., Juhojuntti, N., Kummerow, J., Henninges, J., Juhlin, C., Luth, S., and Ivandic, M., Monitoring and Volumetric Estimation of Injected CO2, Using 4D Seismic, Petrophysical Data, Core Measurements and Well Logging: A Case Study at Ketzin, Germany, Geophys. Prospect, 60(5):957-973,2012.

  20. Chadwick, R.A., Arts, R., Eiken, O., Kirby, G.A., Lindeberg, E., and Zweigel, P., 4D Seismic Imaging of an Injected CO2 Plume at the Sleipner Field, Central North Sea, J. Geol. Soc. (London, U.K.) Mem, 29(1):311-320, 2004.

  21. Garcia, A. and Macbeth, C., An Estimation Method for Effective Stress Changes in a Reservoir from 4D Seismics Data, Geophys. Prospect., 61(4):803-816, 2013.

  22. Amini, H. and MacBeth, C., Calibration of Rock Stress-Sensitivity Using 4D Seismic Data, in Proc. of 77th EAGE Conference and Exhibition, 2015.

  23. Huseby, O., Andersen, M., Svorstol, I., and Dugstad, O., Improved Understanding of Reservoir Fluid Dynamics in the North Sea Snorre Field by Combining Tracers, 4D Seismic, and Production Data, SPE Reservoir Eval. Eng., 11(4):768-777, 2008.. Lumley, D., Meadows, M., Cole, S., and Adams, D., Estimation of Reservoir Pressure and Saturations by Crossplot Inversion of 4D Seismic Attributes, in SEG Technical Program Expanded Abstracts, Tulsa, OK: Society of Exploration Geophysicists, 22(1):1513-1516, 2003.

  24. Landr0, M., 4D Seismic, in Petroleum Geoscience, K. Bjerlykke, Ed., Berlin, Heidelberg: Springer, 489-514, 2015.

  25. MacBeth, C., A Classification for the Pressure-sensitivity Properties of a Sandstone Rock Frame, Geophysics, 69(2):497-510, 2004.

  26. Stephen, K.D. and Macbeth, C., Reducing Reservoir Prediction Uncertainty Using Seismic History Matching, in Proc. of SPE Europec/EAGE Annual Conference and Exhibition, Dallas, TX: Society of Petroleum Engineers, 2006.

  27. Kim, J.G. and Deo, M.D., Finite Element, Discrete-Fracture Model for Multiphase Flow in Porous Media, AIChE J, 46(6):1120-1130, 2000.

  28. Zhang, K., Zhang, X., Zhang, L., Li, L., Sun, H., Huang, Z., and Yao, J., Assisted History Matching for the Inversion of Fractures based on Discrete Fracture-Matrix Model with Different Combinations of Inversion Parameters, Comput. Geosci., 21(5-6):1365-1383, 2017.

  29. Zhang, L., Zhang, X., Zhang, K., Zhang, H., and Yao, J., Inversion of Fractures with Combination of Production Performance and In Situ Stress Analysis Data, J. Nat. Gas Sci. Eng., 42:232-242, 2017.

  30. Kazemi, H., Merrill, Jr., L.S., Porterfield, K.L., and Zeman, P.R., Numerical Simulation of Water-Oil Flow in Naturally Fractured Reservoirs, Soc. Petrol. Eng. J., 16(6):317-326, 1976.

  31. Shakiba, M., Modeling and Simulation of Fluid Flow in Naturally and Hydraulically Fractured Reservoirs Using Embedded Discrete Fracture Model (EDFM), PhD, University of Texas at Austin, 2014.

  32. Yan, X., Huang, Z.Q., Yao J., and Hhuang, T., The Embeded Discrete Fracture Model based on Mimetic Finite Difference Method, Sci. Sin. Technol., 44(12):1333-1342,2014.

  33. Shakiba, M. and Sepehrnoori, K., Using Embedded Discrete Fracture Model (EDFM) and Microseismic Monitoring Data to Characterize the Complex Hydraulic Fracture Networks, in Proc. of SPE Tech. Conf. Exhibition, Dallas, TX: Society of Petroleum Engineers, 2015.

  34. Lee, S.H., Lough, M.F., and Jensen, C.L., Hierarchical Modeling of Flow in Naturally Fractured Formations with Multiple Length Scales, Water Resour. Res, 37(3):443-455,2001.

  35. Li, L. and Lee, S.H., Efficient Field-Scale Simulation for Black Oil in a Naturally Fractured Reservoir via Discrete Fracture Networks and Homogenized Media, in Proc. of Int. Oil Gas Conf. Exhibition in China, Dallas, TX: Society of Petroleum Engineers, 2006.

  36. Moinfar, A., Development of an Efficient Embedded Discrete Fracture Model for 3D Compositional Reservoir Simulation in Fractured Reservoirs, SPE J, 19(2):289-303, 2014.

  37. Moinfar, A., Varavei, A., Sepehrnoori, K., and Johns, R.T., Development of a Novel and Computationally-Efficient Discrete-Fracture Model to Study IOR Processes in Naturally Fractured Reservoirs, in Proc. of SPE Improved Oil Recovery Symposium, Dallas, TX: Society of Petroleum Engineers, 2012.

  38. Fischer, P., Jardani, A., and Lecoq, N., Hydraulic Tomography of Discrete Networks of Conduits and Fractures in a Karstic Aquifer by Using a Deterministic Inversion Algorithm, Adv. Water Resour., 112:83-94, 2018.

  39. Peaceman, D.W., Fundamentals of Numerical Reservoir Simulation, Amsterdam, the Netherlands: Elsevier, 2000.

  40. Backus, G.E., Long-Wave Elastic Anisotropy Produced by Horizontal Layering, J. Geophys. Res., 67(11):4427-4440,1962.

  41. Gassmann, F., Elasticity of Porous Media, Vierteljahrsschr. Naturforsch. Ges. Zuerich, 96:1-23, 1951.

  42. Bayes, T., Price, R., and Canton, J., An Essay towards Solving a Problem in the Doctrine of Chances, Philos. Trans. R Soc. London, 53:370-418, 1763.

  43. Van De Schoot, R., Winter, S.D., Ryan, O., Zondervan-Zwijnenburg, M., and Depaoli, S., A Systematic Review of Bayesian Articles in Psychology: The Last 25 Years, Psych. Methods, 22(2):217, 2017.

  44. Gavalas, G.R., Shah, P.C., and Seinfeld, J.H., Reservoir History Matching by Bayesian Estimation, Soc. Pet. Eng. J, 16(16):337-350, 1976.

  45. Wang, J., Xu, C., Yang, X., and Zurada, J.M., A Novel Pruning Algorithm for Smoothing Feedforward Neural Networks based on Group Lasso Method, IEEE Trans. Neural Networks Learn. Syst., 29(5):2012-2024, 2018.

  46. Sukale, S. and Biradar, T.D., Review of Nature Inspired Algorithms, Int. J. Comput. Appl., 109(3):6-8, 2015.

Articles with similar content:

International Journal for Uncertainty Quantification, Vol.6, 2016, issue 5
Zhengming Wang, Xiaojun Duan, Zigan Zhao
International Journal for Uncertainty Quantification, Vol.4, 2014, issue 2
Bert J. Debusschere, Robert D. Berry, Habib N. Najm, Cosmin Safta, Khachik Sargsyan
International Journal for Uncertainty Quantification, Vol.2, 2012, issue 3
Sai Hung Cheung, Ernesto Prudencio
International Journal for Uncertainty Quantification, Vol.2, 2012, issue 4
Fikri Kuchuk, Richard Booth, Kirsty Morton, Mustafa Onur
Efficient Finite Element Methods for Deformable Bodies in Medical Applications
Critical Reviews™ in Biomedical Engineering, Vol.40, 2012, issue 2
Christian Dick, Joachim Georgii