Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes
SJR: 0.137 SNIP: 0.341 CiteScore™: 0.43

ISSN Druckformat: 1093-3611
ISSN Online: 1940-4360

High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes

DOI: 10.1615/HighTempMatProc.2019030196
pages 157-164

NUMERICAL STUDY OF GAS HEATING IN OZONE GENERATED BY DBD IN OXYGEN

Amar Benmoussa
Laboratoire de Physique des Plasmas, Matériaux Conducteurs et leurs Applications, Université d'Oran des Sciences et de la Technologie USTO-MB, Faculté de Physique, Oran 31000, Algeria; Ecole Supérieure en Génie Electrique et Energétique (ESG2E), Oran, Algérie
Barkahoum Larouci
Laboratoire de Physique des Plasmas, Matériaux Conducteurs et leurs Applications, Université d'Oran des Sciences et de la Technologie USTO-MB, Faculté de Physique, Oran 31000, Algeria
Ahmed Belasri
Laboratoire de Physique des Plasmas, Matériaux Conducteurs et leurs Applications, Université d'Oran des Sciences et de la Technologie USTO-MB, Faculté de Physique, Oran 31000, Algeria

ABSTRAKT

The goal of the present work is to highlight the gas temperature effect in ozone generated by dielectric barrier discharge (DBD) in pure oxygen (O2). In this study, a one-dimensional fluid model was used to describe the discharge behavior. The study of the gas heating phenomena study in the frame of this paper is due to the gas heating effect. The gas temperature profile obtained in the DBD in oxygen was calculated by means of the heat transport equation. The results show that the rise of the gas temperature in the DBD inoxygen is more important near the dielectrics. The high value of gas temperature in this region is limited by the increase in the electric field and ion current density.

REFERENZEN

  1. Benmoussa, A., Belasri, A., Ghaleb, F., and Harrache, Z., Gas Heating Phenomenon in Rare Gas Dielectric Barrier Discharge for Excimer Lamps, IEEE Trans., Plasma Sci., vol. 42, no. 3, pp. 706-711, 2014.

  2. Benyamina, M., Belasri, A., and Khodja, K., Physicochemical Investigation of Homogeneous Pulsed Discharge in N2/O2 for Ozone Production, Ozone: Sci. Eng., vol. 36, pp. 253-263, 2014.

  3. Boonduang, S. and Limsuwan, P., Effect of Generating Heat on Ozone Generation in Dielectric Cylinder-Cylinder DBD Ozone Generator, Energy Power Eng., vol. 5, pp. 523-527, 2013.

  4. Chalmers, I.D., Baird, R.C., and Kelly, T., Control of an Ozone Generator-Theory and Practice, Meas. Sci. Technol., vol. 9, pp. 983-988, 1998.

  5. Eliasson, B., Hirth, M., and Kogelschatz, U., Ozone Synthesis from Oxygen in Dielectric Barrier Discharges, J. Phys. D: Appl. Phys, vol. 20, pp. 1421-1437, 1987.

  6. Gibalov, V.-I. and Pietsch, G.-J., On the Performance of Ozone Generators Working with Dielectric Barrier Discharges, Ozone: Sci. Eng., vol. 28, pp. 119-124, 2006.

  7. Jodzis, S. and Petryk, J., Gas Temperature in an Ozonizer the Computer Modeling of an Actual Discharge System, IEEE Trans., Plasma Sci., vol. 39, no. 11, pp. 2120-2121, 2011.

  8. Kitayama, J. and Kuzumoto, M., Theoretical and Experimental Study on Ozone Generation Characteristics of an Oxygen-Fed Ozone Generator in Silent Discharge, J. Phys. D: Appl. Phys., vol. 30, pp. 2453-2461, 1997.

  9. Kogelschatz, U., Eliasson, B., and Egli, W., Dielectric-Barrier Discharges. Principles and Applications, J. Phys. IV (Colloque), vol. 7, pp. C4-47-C4-66, 1997.

  10. Lemmon, E.W. and Jacobsen, R.T., Viscosity and Thermal Conductivity Equations for Nitrogen, Oxygen, Argon, and Air, Int. J. Thermophys., vol. 25, no. 1, pp. 21-69, 2004.

  11. Linsheng, W., Bangfa, P., Ming, L., Yafang. Z., and Zhaoji, H., Dynamic Characteristics of Positive Pulsed Dielectric Barrier Discharge for Ozone Generation in Air, Plasma Sci. Technol., vol. 18, no. 2, pp. 147-156, 2016.

  12. Mastanaiah, N., Banerjee, P., Johnson, J.A., and Roy, S., Examining the Role of Ozone in Surface Plasma Sterilization using Dielectric Barrier Discharge (DBD), Plasma Process. Polym., vol. 10, pp. 1120-1133, 2013.

  13. Murata, T., Okita, Y., Noguchi, M., and Takase, I., Basic Parameters of Coplanar Discharge Ozone Generator, Ozone, Sci. Eng., vol. 26, pp. 429-442, 2004.

  14. Ohe, K., Kamiya, K., and Kimura, T., Improvement of Ozone Yielding Rate in Atmospheric Pressure Barrier Discharges using a Time-Modulated Power Supply, IEEE Trans., Plasma Sci., vol. 27, no. 6, pp. 1582-1587, 1999.

  15. Samaranayake, W.J.M., Miyahara, Y., Namihira, T., Katsuki, S., Hackam, R. and Akiyama, H., Ozone Production using Pulsed Dielectric Barrier Discharge in Oxygen, IEEE Trans., Dielectrics Electrical Insul, vol. 7, no. 6, pp. 849-854, 2000.

  16. Seok, D.C., Jeong, H.Y., Lho, T., and Jeong, Y.H., DBD Parameter for Production of High Ozone Concentration, 31st ICPIG, Granada, Spain, July 14-19, 2013.

  17. Simek, M. and Clupek, M., Efficiency of Ozone Production by Pulsed Positive Corona Discharge in Synthetic Air, J. Phys. D: Appl. Phys., vol. 35, pp. 1171-1175, 2002.

  18. Simek, M., Pekarek, S., and Prukner, V., Influence of Power Modulation on Ozone Production Using an ac Surface Dielectric Barrier Discharge in Oxygen, Plasma Chem. Plasma Process., vol. 30, no. 5, pp. 607-617, 2010.

  19. Sung, T.-L., Teii, S., Liu, C.-M., Hsiao, R.-C., Chen, P.-C., Wu, Y.-H., Yang, C.-K., Teii, K., Ono, S., and Ebihara, K., Effect of Pulse Power Characteristics and Gas Flow Rate on Ozone Production in a Cylindrical Dielectric Barrier Discharge Ozonizer, Vacuum, vol. 90, pp. 65-69, 2013.

  20. Sung, Y.-M. and Sakoda, T., Optimum Conditions for Ozone Formation in a Micro Dielectric Barrier Discharge, Surface Coat. Technol., vol. 197, pp. 148-153, 2005.

  21. Teranishi, K., Shimomura, N., Suzuki, S., and Itoh, H., Development of Dielectric Barrier Discharge-Type Ozone Generator Constructed with Piezoelectric Transformers: Effect of Dielectric Electrode Materials on Ozone Generation, Plasma Sources Sci. Technol., vol. 18, no. 4, p. 045011, 2009.

  22. Vaduganathan, L., Poonamallie, B.A., and Nagalingam, M., Effects of Temperature and Flow Rates of Ozone Generator on the DBD by Varying Various Electrical Parameters, Am. J. Appl. Sci., vol. 9, no. 9, pp. 1496-1502, 2012.

  23. Wei, L.-S., Peng, B.-F., Li, M., and Zhang, Y.-F., A Numerical Study of Species and Electric Field Distributions in Pulsed DBD in Oxygen for Ozone Generation, Vacuum, vol. 125, pp. 123-132, 2016.

  24. Yanallah, K., Pontiga, F., Fernandez-Rueda, A., and Castellanos, A., Experimental Investigation and Numerical Modeling of Positive Corona Discharge: Ozone Generation, J. Phys. D: Appl. Phys., vol. 42, p. 065202, 2009.

  25. Yanallah, K., Pontiga, F., Fernandez-Rueda, A., Castellanos, A., and Belasri, A., Ozone Generation by Negative Corona Discharge: The Effect of Joule Heating, J. Phys. D: Appl. Phys., vol. 41, p. 195206, 2008.

  26. Zhang, S., Gaens, W., Gessel, B., Hofmann, S., Veldhuizen, E., Bogaerts, A., and Bruggeman, P., Spatially Resolved Ozone Densities and Gas Temperatures in a Time Modulated RF Driven Atmospheric Pressure Plasma Jet: An Analysis of the Production and Destruction Mechanisms, J. Phys. D: Appl. Phys, vol. 46, p. 205202, 2013.


Articles with similar content:

ANALYSIS OF THE CARBON ARC PROCESS FOR FULLERENE SYNTHESIS
Progress in Plasma Processing of Materials, 1997, Vol.1, 1997, issue
J.F. Bilodeau, K. Saidane, M. Razafinimanana, S. Vacquie, Alain Gleizes, J. Pousse
SPECTROSCOPIC STUDY OF A HELIUM MICROWAVE DISCHARGE PRODUCED BY THE AXIAL INJECTION TORCH
High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, Vol.8, 2004, issue 4
M.C. Quintero, R. Alvarez, Antonio Sola, Antonio Rodero, Antonio Gamero
MODELING OF FLUID, THERMAL AND ELECTRIC QUANTITIES CHARACTERIZING A WATER-SWIRL STABILIZED ELECTRIC ARC
Progress in Plasma Processing of Materials, 1999, Vol.1, 1999, issue
Jiri Jenista
ROTATIONAL DISTRIBUTION OF OH MOLECULES IN SUPERSONIC THERMAL PLASMA JET
High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, Vol.13, 2009, issue 2
A. Maslani, V. Sember
KINETIC MODELING OF SELF-SUSTAINED DISCHARGE XeCl LASER AND ITS INFLUENCE ON THE EFFICIENCY
High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, Vol.7, 2003, issue 2
Ahmed Belasri, Z. Harrache