Abo Bibliothek: Guest
High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes

Erscheint 4 Ausgaben pro Jahr

ISSN Druckformat: 1093-3611

ISSN Online: 1940-4360

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 0.4 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.1 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00005 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.07 SJR: 0.198 SNIP: 0.48 CiteScore™:: 1.1 H-Index: 20

Indexed in

INFLUENCE OF TEMPERATURE ON HIGH-FIELD INJECTION MODIFICATION OF MIS STRUCTURES WITH THERMAL SiO2 FILMS DOPED WITH PHOSPHORUS

Volumen 23, Ausgabe 4, 2019, pp. 303-312
DOI: 10.1615/HighTempMatProc.2019031840
Get accessGet access

ABSTRAKT

The paper presents a study of the processes of electron trapping in metal-insulator-semiconductor (MIS) structures with gate dielectric based on silicone dioxide doped with phosphorus under high-field Fowler−Nordheim tunnel injection of electrons in a range of temperatures from 293 to 373 K. We have ascertained that the negative charge being trapped in phosphosilicate glass (PSG) consisted of two components with a different energy of the thermal ionization ΔEa1 = 0.2-0.3 eV and ΔEa2 = 1.0-1.2 eV. A part of the charge with a low energy of the thermal ionization virtually drain off at annealing temperature of 473 K for a period of time of 20 min and then the dielectric contains only the thermostable part of the negative charge that can be utilized to correct the threshold voltage of MIS transistors. We have ascertained that an implementation of the high-field tunnel injection of electrons for MIS structures with SO2-PSG gate dielectric has raised not only density of negative charge trapped but also its thermostable component.

REFERENZEN
  1. Andreev, D.V., Bondarenko, G.G., Andreev, V.V., Maslovsky, V.M., and Stolyarov, A.A., Modification of MIS Structures with Thermal SiO2 Films by Phosphorus Diffusion, High Temp. Mater. Process.: An Int. Quart. High-Technol. Plasma Processes, vol. 21, no. 4, pp. 299-307, 2017a.

  2. Andreev, D.V., Bondarenko, G.G., Andreev, V.V., Maslovsky, V.M., and Stolyarov A.A., Modification of MIS Devices by Irradiation and High-Field Electron Injection Treatments, Acta Phys. Pol. A, vol. 132, no. 2, pp. 245-248, 2017b.

  3. Andreev, V.V., Bondarenko, G.G., Maslovsky, V.M., Stolyarov, A.A., and Andreev, D.V., Modification and Reduction of Defects in Thin Gate Dielectric of MIS Devices by Injection-Thermal and Irradiation Treatments, Phys. Status Solidi C, vol. 12, nos. 1-2, pp. 126-130, 2015a.

  4. Andreev, V.V., Bondarenko, G.G., Maslovsky, V.M., Stolyarov, A.A., and Andreev, D.V., Control Current Stress Technique for the Investigation of Gate Dielectrics of MIS Devices, Phys. Status Solidi C, vol. 12, no. 3, pp. 299-303, 2015b.

  5. Andreev, V.V., Maslovsky, V.M., Andreev, D.V., and Stolyarov, A.A., Method of Stress and Measurement Modes for Research of Thin Dielectric Films of MIS Structures, Proc. SPIE, vol. 10224, p. 1022429(1-8), 2016.

  6. Andreev, V.V., Maslovsky, V.M., Andreev, D.V., and Stolyarov, A.A., Charge Effects in Dielectric Films of MIS Structures Being under High-Field Injection of Electrons at Ionizing Radiation, Proc. SPIE, Int. Conf. on Micro- and Nano-Electronics 2018, vol. 11022, p. 1102207(1-7), 2019.

  7. Arnold, D., Cartier, E., and DiMaria, D.J., Theory of High-Field Electron Transport and Impact Ionization in Silicone Dioxide, Phys. Rev. B, vol. 49, no. 15, pp. 10278-10297, 1994.

  8. Balk, P. and Eldridge, J.M., Phosphosilicate Glass Stabilization of FET Devices, Proc. IEEE, vol. 57, pp. 1558-1563, 1969.

  9. Bondarenko, G.G., Andreev, V.V., Drach, V.E., Loskutov, S.A., and Stolyarov, M.A., Study of Temperature Dependence of Positive Charge Generation in Thin Dielectric Film of MOS Structure under High-Fields, Thin Solid Films, vol. 515, pp. 670-673, 2006.

  10. Fanciulli, M., Bonera, E., and Nokhrin, S., Phosphorous-Oxygen Hole Centers in Phosphosilicate Glass Films, Phys. Rev. B, vol. 74, p. 134102, 2006.

  11. Fleetwood, D.M., Border Traps and Bias-Temperature Instabilities in MOS Devices, Microelectron. Reliab, vol. 80, pp. 266-277, 2018.

  12. Hosono, H., Kajihara, K., Hirano, M., and Oto, M., Photochemistry in Phosphorus-Doped Silica Glass by ArF Excimer Laser Irradiation: Crucial Effect of H2 Loading, J. Appl. Phys., vol. 91, pp. 4121-4124, 2002.

  13. Idris, M.I., Weng, M.H., Chan, H.-K., Murphy, A.E., Clark, D.T., Young, R.A.R., Ramsay, E.P., Wright, N.G., and Horsfall, A.B., Instability of Phosphorous Doped SiO2 in 4H-SiC MOS Capacitors at High Temperatures, J. Appl. Phys, vol. 120, p. 214902(1-10), 2016.

  14. Jayawardena, A., Shen, X., Mooney, P.M., and Dhar, S., Mechanism of Phosphorus Passivation of Near-Interface Oxide Traps in 4H-SiC MOS Devices Investigated by CCDLTS and DFT Calculation, Semicond. Sci. Technol., vol. 33, no. 6, p. 065005(1-8), 2018.

  15. Levin, M.N., Tatarintsev, A.V., Makarenko, V.A., and Gitlin, V.R., X-ray or UV Adjustment of MOS Threshold Voltage: Analytical and Numerical Modeling, Russ. Microelectron., vol. 35, no. 5, pp. 329-336, 2006.

  16. Makhavikou, M., Komarov, F.F., Vlasukova, L.A., Milchanin, O.V., and Parkhomenko, I.N., Ion-Beam Synthesis of Zinc-Based Nanoparticles in Si and SiO2, High Temp. Mater. Process.: An Int. Quart. High-Technol. Plasma Processes, vol. 18, no. 4, pp. 255-261, 2014.

  17. Mikhailovskii, I.P., Potapov, P.V., and Epov, A.E., Sign of the Charge Accumulated in Thermal Films of Silicone MIS Structures under High Electric Field Condition, Phys. Stat. Sol. A, vol. 94, pp. 679-685, 1986.

  18. Pacchioni, G., Erbetta, D., Ricci, D., and Fanciulli, M., Electronic Structure of Defect Centers P1, P2, and P4 in P-Doped SiO2, J. Phys. Chem. B, vol. 105, pp. 6097-6102, 2001.

  19. Palumbo, F., Wen, C., Lombardo, S., Pazos, S., Aguirre, F., Eizenberg, M., Hui, F., and Lanza, M., A Review on Dielectric Breakdown in Thin Dielectrics: Silicone Dioxide, High-K, and Layered Dielectrics, Adv. Funct. Mater., vol. 1900657, p. 1900657(1-26), 2019.

  20. Sharma, Y.K., Ahyi, A.C., Issacs-Smith, T., Shen, X., Pantelides, S.T., Zhu, X., and Feldman, L.C., Phos-phorous Passivation of the SiO2/4H-SiC Interface, Solid-State Electronics, vol. 68, pp. 103-107, 2012.

  21. Stesmans, A., Clemer, K., and Afanas'ev, V.V., P-Associated Defects in the High-K Insulators HfO2 and ZrO2 Revealed by Electron Spin Resonance, Phys. Rev. B, vol. 74, p. 125341, 2008.

  22. Strong, A.W., Wu, E.Y., Vollertsen, R., Sune, J., Rosa, G.L., Rauch, S.E., and Sullivan, T.D., Reliability Wearout Mechanisms in Advanced CMOS Technologies, Hoboken, NJ: Wiley, pp. 73-306, 2009.

  23. Yano, H., Kanafuji, N., Osawa, A., Hatayama, T., and Fuyuki, T., Threshold Voltage Instability in 4H-SiC MOSFETs with Phosphorus-Doped and Nitrided Gate Oxides, IEEE Trans. Electron. Devices, vol. 62, no. 2, pp. 324-332, 2015.

  24. Zhang, J.F., Taylor, S., and Eccleston, W., Electron Trap Generation in Thermally Grown SiO2 under Fowler-Nordheim Stress, J. Appl. Phys., vol. 71, no. 2, pp. 725-734, 1992.

REFERENZIERT VON
  1. Andreev D. V., Bondarenko G. G., Andreev V. V., Stolyarov A. A., Increasing the Charge Stability of Gate Dielectric Films of MIS Structures by Doping Them with Phosphorus, Inorganic Materials: Applied Research, 12, 2, 2021. Crossref

Neueste Ausgabe

DETERMINATION OF THE MASS BALANCE OF HIGH-CARBON FERROCHROME IN A SUBMERGED ARC FURNACE Sinan Kapan, Unal Camdali, Nevin Celik RHEOLOGICAL BEHAVIOR AND 3D PRINTING OF HIGHLY FILLED ALUMINA-POLYAMIDE FILAMENTS DURING FUSED DEPOSITION MODELING E. Kuznetsova, Y. O. Pristinskiy, E. Bentseva, N.W. Solis Pinargote, Anton Smirnov SCRATCH TESTING OF ZrN COATING ON TI-6AL-4V TITANIUM ALLOY SURFACE PRELIMINARY TREATED BY COMPRESSION PLASMA FLOWS IMPACT Nikolai N. Cherenda, Alexandra B. Petukh, Andrej K. Kuleshov, D. P. Rusalski, N. V. Bibik, Vladimir V. Uglov, Sergey N. Grigoriev, Alexey A. Vereschaka, Valiantsin M. Astashynski, Anton M. Kuzmitski ELECTRON-BEAM SINTERING OF ZIRCONIUM DIOXIDE/TITANIUM CERAMICS FOR MICROELECTRONICS PRODUCTS Aleksandr S. Klimov, I. Yu. Bakeev, A. V. Dolgova, A. A. Kokolov, Efim M. Oks, Aleksey A. Zenin THE EFFECT OF THE FLUORINE CONCENTRATION IN A PLASMA-FORMING GAS MIXTURE ON THE CHEMICAL COMPOSITION, SURFACE CHARGE, AND RELIEF PARAMETERS OF FLUOROCARBON COATINGS ON PET Pavel A. Shchur, T. V. Khodyrev PREPARATION AND THERMOELECTRIC PROPERTIES OF p-TYPE Ag(1-x)Cu(1+x)Te SAMPLES BY SPARK PLASMA SINTERING METHOD Shan Cheng, Fanguo Li, Dengxin Wang, Luteng Liu, Shihong Lu ELECTRON-BEAM SYNTHESIS OF ZIRCONIA CERAMIC COATINGS IN THE FOREVACUUM PRESSURE RANGE Yury G. Yushkov, Artem A. Andronov, A. Yu. Nazarov, Efim M. Oks, K. N. Ramazanov, Andrey V. Tyunkov, Denis Zolotukhin INCREASING THE WEAR RESISTANCE OF TITANIUM ALLOYS BY DEPOSITION OF A MODIFYING COATING (Zr,Nb)N Alexey A. Vereschaka, Catherine Sotova, Kirill Makarevich, Natalia Baranova PHYSICAL AND MECHANICAL PROPERTIES AND OPERATIONAL CHARACTERISTICS OF CORONA SPRAYED POWDER COATINGS Marsel Fazlyyyakhmatov
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen Preise und Aborichtlinien Begell House Kontakt Language English 中文 Русский Português German French Spain