Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Plasma Medicine
SJR: 0.271 SNIP: 0.316 CiteScore™: 1.9

ISSN Druckformat: 1947-5764
ISSN Online: 1947-5772

Plasma Medicine

DOI: 10.1615/PlasmaMed.2020033626
pages 15-26

Effect of Plasma-Activated Medium and Water on Replication and Extracellular Virions of Herpes Simplex Virus-1

Venelin Tsvetkov
Laboratory of Virology, Faculty of Biology, University of Sofia, Sofia 1164 Bulgaria
Anton Hinkov
Laboratory of Virology, Faculty of Biology, University of Sofia, Sofia 1164 Bulgaria
Daniel Todorov
Laboratory of Virology, Faculty of Biology, University of Sofia, Sofia 1164 Bulgaria
Evgenia Benova
Department for Language Teaching and International Students (DLTIS), University of Sofia, 1111 Sofia, Bulgaria
Ivan Tsonev
Faculty of Physics, Sofia University, 1164 Sofia, Bulgaria
Todor Bogdanov
Medical Faculty, Medical University – Sofia, 1431 Sofia, Bulgaria
Stoyan Shishkov
Laboratory of Virology, Faculty of Biology, University of Sofia, Sofia 1164 Bulgaria
Kalina Shishkova
Laboratory of Virology, Faculty of Biology, University of Sofia, Sofia 1164 Bulgaria

ABSTRAKT

We use a surface-wave sustained discharge (SWD) in argon at atmospheric pressure (using a plasma torch) in these experiments. The plasma torch is sustained using a 2.45-GHz electromagnetic wave with applied microwave powers of 13, 15, and 20 W. At these discharge conditions, the length of the plasma torch outside of the quartz tube is ~1−1.5 cm, and the gas plasma temperature does not exceed 40°C. This allows direct treatment of samples using the active zone of the discharge. In the cytotoxicity study, only two of the experimental settings achieve up to 50% survival of the cell monolayer after adding plasma-treated medium. Examining the effect of the plasma torch treatment media on herpes simplex virus-1 replication, we found that none of the applied experimental assays show significant protection on the cell monolayer. In a study of the virucidal action of a plasma-treated viral suspension diluted with sterile water at a ratio of 1:2 that was treated for 300 s at 13-W wave power, a decrease in the viral sample titer occurred unlike in the 1.67 log10 control. Using optical emission spectroscopy, we found that OH intensity increases at the contact point between plasma and the water surface. Intensity of NO-γ also increases to the contact point with applied power. We also monitored the amount of peroxide radicals in plasma-treated water and nutrient medium in the presence of lucigenin.

REFERENZEN

  1. Todorova Y, Yotinov I, Topalova Y, Benova E, Marinova P, Tsonev I, Bogdanov T. Evaluation of the effect of cold atmospheric plasma on oxygenases' activities for application in water treatment technologies. Environ Technol. 2019 Dec 19;40(28):3783-92.

  2. Bogdanov T, Tsonev I, Marinova P, Benova E, Rusanov K, Rusanova M, Atanassov I, Kozakova Z, Krcma F. Microwave plasma torch generated in argon for small berries surface treatment. Appl Sci. 2018 Oct;8(10):1870.

  3. Fridman G, Friedman G, Gutsol A, Shekhter AB, Vasilets VN, Fridman A. Applied plasma medicine. Plasma Proc Polym. 2008 Aug 15;5(6):503-33.

  4. Laroussi M, Mendis DA, Rosenberg M. Plasma interaction with microbes. New J Phys. 2003 Apr 30;5(1):41.

  5. Aboubakr HA, Williams P, Gangal U, Youssef MM, El-Sohaimy SA, Bruggeman PJ, Goyal SM. Virucidal effect of cold atmospheric gaseous plasma on feline calicivirus, a surrogate for human norovirus. Appl Environ Microbiol. 2015 Jun 1;81(11):3612-22.

  6. Wu Y, Liang Y, Wei K, Li W, Yao M, Zhang J, Grinshpun SA. MS2 virus inactivation by atmospheric-pressure cold plasma using different gas carriers and power levels. Appl Environ Microbiol. 2015 Feb 1;81(3):996-1002.

  7. Terrier O, Essere B, Yver M, Barthelemy M, Bouscambert-Duchamp M, Kurtz P, VanMechelene D, Morfin F, Billaud G, Ferraris O, Lina B, Rosa-Calatrava M, Moules V. Cold oxygen plasma technology efficiency against different airborne respiratory viruses. J Clin Virol. 2009 Jun 1;45(2):119-24.

  8. Krcma F, Tsonev I, Smejkalova K, Truchla D, Kozakova Z, Zhekova M, Marinova P, Bogdanov T, Benova E. Microwave micro torch generated in argon based mixtures for biomedical applications. J Phys D Appl Phys. 2018 Aug 21;51:414001.

  9. Tsonev I, Atanasov N, Atanasova G, Krcma F, Bogdanov T. Atmospheric pressure microwave plasma torch for biomedical applications. Plasma Med. 2018;8(4):403-9.

  10. Bogdanov T, Tsonev I, Atanasova M, Marinova P, Topalova Y, Todorova Y, Yotinov I, Benova E. Surface-wave-sustained plasma source for biomedical applicationsin microwave discharges. Proceedings of the 10th International Workshop on Microwave Discharges: Fundamental and Applications; Zvenigorod, Russia. 2018.

  11. Benova E, Marinova P, Bogdanov T, Tsonev I, Krcma F, Topalova Y, Todorova Y, Yotinov I. Interaction of microwave plasma torch sustained by travelling electromagnetic wave with liquids. Proceedings of the 10th International Workshop on Microwave Discharges: Fundamental and Applications; Zvenigorod, Russia. 2018.

  12. Aboubakr HA, Gangal U, Youssef MM, Goyal SM, Bruggeman PJ. Inactivation of virus in solution by cold atmospheric pressure plasma: identification of chemical inactivation pathways. J Phys D Appl Phys. 2016 Apr 15;49(20):204001.

  13. Moisan M, Nowakowska H. Contribution of surface-wave (SW) sustained plasma columns to the modeling of RF and microwave discharges with new insight into some of their features. A survey of other types of SW discharges. Plasma Sources Sci Technol. 2018 Jul 18;27(7):073001.

  14. Benova E, Atanasova M, Bogdanov T, Marinova P, Krcma F, Mazankova V, Dostal L. Microwave plasma torch at a water surface. Plasma Med. 2016;6(1):59-65.

  15. Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J Immunol Meth. 1983 Dec 16;65(1-2):55-63.

  16. Pauwels R, Balzarini J, Baba M, Snoeck R, Schols D, Herdewijn P, Desmyter J, De Clercq E. Rapid and automated tetrazolium-based colorimetric assay for the detection of anti-HIV compounds. J Virol Meth. 1988 Aug 1;20(4):309-21.

  17. Reed LJ, Muench H. A simple method of estimating fifty per cent endpoints. Am J Epidemiol. 1938 May 1;27(3):493-7.

  18. Kutasi K, Popovic D, Krstulovic N, Milosevic S. Tuning the composition of plasma-activated water by a surface-wave microwave discharge and a kHz plasma jet. Plasma Source Sci Technol. 2019 Sep 6;28(9):095010.

  19. Filipic A, Primc G, Mehle N, Gutierrez-Aguirre I, Ravnikar M, Mozetic M, Zel J, Dobnik D. Cold atmospheric plasma as a novel method for inactivation of potato virus Y in water samples. Food Environ Virol. 2019 Sep 1;11(3):220-8.

  20. Guo L, Xu R, Gou L, Liu Z, Zhao Y, Liu D, Zhang L, Chen H, Kong MG. Mechanism of virus inactivation by cold atmospheric-pressure plasma and plasma-activated water. Appl Environ Microbiol. 2018 Sep 1;84(17):e00726-18.

  21. Su X, Tian Y, Zhou H, Li Y, Zhang Z, Jiang B, Yang B, Zhang J, Fang J. Inactivation efficacy of nonthermal plasma-activated solutions against newcastle disease virus. Appl Environ Microbiol. 2018 May 1;84(9):e02836-17.

  22. Zimmermann JL, Dumler K, Shimizu T, Morfill GE, Wolf A, Boxhammer V, Schlegel J, Gansbacher B, Anton M. Effects of cold atmospheric plasmas on adenoviruses in solution. J Phys D Appl Phys. 2011 Nov 30;44(50):505201.19.


Articles with similar content:

EVAPORATION OF ZIRCONIA IN AN INDUCTIVELY COUPLED PLASMA
High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, Vol.15, 2011, issue 4
Gunter Lins , David W. Branston
PLASMA SOURCE FOR THE EMULATION OF THE ATMOSPHERIC FLUORESCENCE PRODUCED BY THE SECONDARIES OF ULTRA HIGH ENERGY COSMIC RAY PARTICLES
High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, Vol.13, 2009, issue 3-4
S. Maltezos, E. Fokitis, V. Gika, I. Kouretis, P. Fetfatzis, N. Antonakakis Spyropoulos
EVAPORATION OF ZIRCONIA IN AN INDUCTIVELY COUPLED PLASMA
Progress in Plasma Processing of Materials, 1999, Vol.1, 1999, issue
Gunter Lins , David W. Branston
Electrical and Optical Characterization of the Plasma Needle for Use in Biomedical Applications
Plasma Medicine, Vol.7, 2017, issue 4
G. Avaria, C. Pavez, S. Davis, A. Aguilera, J. Moreno, L. Soto, J. Jain, Biswajit Bora, M. J. Inestrosa-Izurieta
EFFECT OF THE DIELECTRIC BARRIER SURFACE DISCHARGE TREATMENT OF VARIOUS SOWING MATERIALS
High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, Vol.18, 2014, issue 1-2
O. Novodvorskii, O. Grabelnych, V. Michalevskii, I. Lyubushkina, Alexander Lazukin, A. Nikitin, S. Krivov