Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Plasma Medicine
SJR: 0.198 SNIP: 0.183 CiteScore™: 0.57

ISSN Druckformat: 1947-5764
ISSN Online: 1947-5772

Plasma Medicine

DOI: 10.1615/PlasmaMed.2019028856
pages 345-355

Surfatron-Produced Atmospheric-Pressure Plasma Jet Applied to Candida Biofilms

Anelise C.O.C. Doria
Universidade do Vale do Paraiba/IP&D/Laboratório de Biotecnologia e Plasmas Elétricos, São José dos Campos, SP, 12244-000, Brazil
Fernanda R. Figueira
Universidade do Vale do Paraiba/IP&D/Laboratório de Biotecnologia e Plasmas Elétricos, São José dos Campos, SP, 12244-000, Brazil
J. S. B. Lima
Universidade de Taubaté/Departamento de Engenharia Mecanica, Taubaté, SP, 12060-440, Brazil
Homero S. Maciel
Centro de Ciencia e Tecnologia de Plasmas e Materiais–PlasMat/Instituto Tecnológico de Aeronáutica, São José dos Campos, SP, 12228-900, Brazil
Sonia Khouri
Universidade do Vale do Paraiba/IP&D/Laboratório de Biotecnologia e Plasmas Elétricos, São José dos Campos, SP, 12244-000, Brazil
S. Pessoa
Centro de Ciência e Tecnologia de Plasmas e Materiais–PlasMat/Instituto Tecnológico de Aeronáutica, São José dos Campos, SP, 12228-900, Brazil

ABSTRAKT

Fungal biofilms represent a constant and predominant cause of chronic infections. They exhibit increased tolerance to antifungal agents and immunological variations, making them difficult to treat with conventional therapeutic agents. The technology of nonthermal plasmas at atmospheric pressure has been increasingly used in studies aimed at eradication and control of fungal contamination. Here, we evaluate the action of a plasma jet that is generated by a surfatron source, using different gas compositions on polyurethane (PU) samples that are contaminated with biofilms of Candida albicans and Candida parapsilosis. Samples were treated using plasma with 4 standard liters per minute (SLM) argon + 6 SLM air in 100 W of applied power (group 1), 4 SLM argon + 9 SLM argon with water vapor in 50 W (group 2), and 4 SLM argon + 9 SLM argon with water vapor in 150 W (group 3). We performed treatments in the postdischarge region (30 mm) for 10 min. We characterized plasmas using optical emission spectroscopy and scanning electron microscopy on samples by infrared images of the surface during plasma treatment, determining colony-forming units (CFU) and surface morphology. Results showed that for C. albicans, groups 1 and 3 plasmas were reduced by 100%, whereas for C. parapsilosis, groups 2 and 3 showed reductions of 92.41% and 97.85% CFU/mL, respectively. Morphological changes were observed in the biofilm cells, and thermal analyses of substrate surface showed that process parameters were adequate to control Candida contamination, because parameters resulted in a small increase in PU surface temperature (< 40°C) during sterilization.

REFERENZEN

  1. Doria ACOC, Figueira FR, Lima JSB, Maciel HS, Khouri S, Pessoa RS. Sterilization of Candida albicans biofilms grown on polymers by atmospheric plasma: From plasma devices to biofilm analysis. In: Henderson J, editor. Biofilms characterization, applications and recent advances. Hauppauge, NY: Nova Science Publications, Inc.; 2016.

  2. Pierce CG, Chaturvedi AK, Lazzell AL, Powell AT, Saville SP, McHardy SF, Lopez-Ribot JL. A novel small molecule inhibitor of Candida albicans biofilm formation, filamentation and virulence with low potential for the development of resistance. NPJ Biofilms Microbiomes [serial on the Internet], 2015 Aug 12;1:15012. Available from: http://www.nature.com/article/articles/npjbio-fims201512.

  3. Kaali P, Strmberg E, Karlsso S. Prevention ofbiofilm associated infections and degradation ofpolymeric materials used in biomedical applications. In: Laskovski AN, editor. Biomedical engineering, trends in materials science. InTech [serial on the Internet], 2011. [27 p.]. Available from: http://www. intechopen.com/books/biomedical-engineering-trends-in-materials-science/prevention-of-biofilm-associated-infections-and-degradation-of-polymeric-materials-used-in-biomedica.

  4. Santana DP, Ribeiro EL, Menezes ACS, Naves PLF. Novas abordagens sobre os fatores de virulencia de Candida albicans. Rev Ciencias Medicas E Biologicas. 2013;12(2):229-33.

  5. Soil DR. Candida biofilms: Is adhesion sexy? CurrBiol. 2008 Aug;18(16):R717-20.

  6. Gaunt LF, Beggs CB, Georghiou GE. Bactericidal action of the reactive species produced by gas-discharge nonthermal plasma at atmospheric pressure: A review. IEEE Trans Plasma Sci. 2006;34(4 II):1257-69.

  7. Kong MG, Kroesen G, Morfill G, Nosenko T, Shimizu T, Van Dijk J, Zimmermann JL. Plasma medicine: An introductory review. New J Phys. 2009;11:1-35.

  8. Laroussi M. Nonthermal decontamination of biological media by atmospheric-pressure plasmas: Review, analysis, andprospects. IEEE Trans Plasma Sci. 2002;30(4 I):1409-15.

  9. Arjunan KP, Sharma VK, Ptasinska S. Effects of atmospheric pressure plasmas on isolated and cellularDNA-Areview. IntJMol Sci. 2015;16(2):2971-3016.

  10. Napp J, Daeschlein G, Napp M, von Podewils S, Gumbel D, Spitzmueller R, Fornaciari P, Hinz P, Junger M. On the history of plasma treatment and comparison of microbiostatic efficacy of a historical high-frequency plasma device with two modern devices. GMS Hyg Infect Control [Internet], 2015;10:Doc08. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26124985.

  11. Alkawareek MY, Algwari QT, Gorman SP, Graham WG, O'Connell D, Gilmore BF. Application of atmospheric pressure nonthermal plasma for the in vitro eradication of bacterial biofilms. FEMS Immunol Med Microbiol. 2012 Jul;65(2):381-4.

  12. Chen C, Liu DX, Liu ZC, Yang AJ, Chen HL, Shama G, Kong MG. A model of plasma-biofilm and plasma-tissue interactions at ambient pressure. Plasma Chem Plasma Proc. 2014 May 4;34(3):403-41.

  13. Mai-Prochnow A, Murphy AB, McLean KM, Kong MG, Ostrikov K. Atmospheric pressure plasmas: Infection control and bacterial responses. Int J Antimicrob Agents. 2014 Jun;43(6):508-17.

  14. Taghizadeh L, Brackman G, Nikiforov A, van der Mullen J, Leys C, Coenye T. Inactivation of biofilms using a low power atmospheric pressure argon plasma jet: The role of entrained nitrogen. Plasma Proc Polym. 2015 Jan;12(l):75-81.

  15. Traba C, Liang IF. The inactivation of Staphylococcus aureus biofilms using low-power argon plasma in a layer-by-layer approach. Biofouling. 2015 Jan 2;31(l):39-48.

  16. Hamdan A, Liu J-L, Cha MS. Microwave plasma jet in water: Characterization and feasibility to wastewater treatment. Plasma Chem Plasma Process [Internet], 2018 Jul 6. Available from: http:// link.springer.com/10.1007/sll090-018-9918-y.

  17. Hnilica J, Potocnakova L, Stupavska M, Kudrle V. Rapid surface treatment of polyamide 12 by microwaveplasmajet. Appl SurfSci. 2014 Jan;288:251-7.

  18. Hnilica J, Kudrle V, Potocnakova L. Surface treatment by atmospheric-pressure surfatronjet. IEEE Trans Plasma Sci. 2012 Nov;40(ll):2925-30.

  19. Hury S, Vidal DR, Desor F, Pelletier L. A parametric study of the destruction efficiency of Bacillus spores in low pressure oxygen-based plasmas. Lett Appl Microbiol. 1998 Jun;26(6):417-21.

  20. Ricard A, Monna V. Reactive molecular plasmas. Plasma Sources Sci Technol. 2002 Aug l;ll(3A):A150-3.

  21. Stranak V, Tichy M, Kriha V, Scholtz V, Sera B, Spatenka P. Technological applications of surfatron produced discharge. J Optoelectron Adv Mater. 2007;9(4):852-7.

  22. Doria ACOC, Sorge CDPC, Santos TB, Brandao J, Gon^alves PAR, Maciel HS, Khouri S, Pessoa RS. Application of post-discharge region of atmospheric pressure argon and air plasmajet in the con-tamination control ofCandida albicans biofilms. Res Biomed Eng. 2015 Dec;31(4):358-62.

  23. Judee F, Wattieaux G, Merbahi N, Mansour M, Castanie-Cornet MP. The antibacterial activity of a microwave argon plasmajet at atmospheric pressure relies mainly on UV-C radiations. J Phys D Appl Phys. 2014;47(40):405201.

  24. Moreau S, Moisan M, Tabrizian M, Barbeau J, Pelletier J, Ricard A, Yahia L'H. Using the flowing afterglow of a plasma to inactivate Bacillus subtilis spores: Influence of the operating conditions. J Appl Phys. 2000;88(2):1166-74.

  25. Gomez JE, Sockalingum GD, Aubert D, Toubas D, Pinon JM, Witthuhn FMM. Characterisation of Candida reference strains by ATR-FTIR. In: Greve J, Puppels GJ, Otto C, Boston DI, London I, editors. Spectroscopy ofbiologicalmolecules: Newdirections. TheNetherlands: Enschede; 1999; pp. 469-70.

  26. Cavalheiro M, Teixeira MC. Candida biofilms: Threats, challenges, and promising strategies. Front Med [Internet], 2018 Feb 13;5. Available from: http://journal.frontiersin.org/article/10.3389/ fmed.2018.00028/full.


Articles with similar content:

Action of an Argon/Water Vapor Plasma Jet in the Sterilization of Silicone Contaminated with Candida albicans
Plasma Medicine, Vol.7, 2017, issue 3
Jhonatan Steffens Brandao Lima, Homero Santiago Maciel, Fernanda Ramos Figueira, Anelise C.O.C. Doria, Ligia Satiko Simomura, Sonia Khouri, Guilherme Torello Cassiano Redi, Rodrigo Savio Pessoa
Air-Based Coaxial Dielectric Barrier Discharge Plasma Source for Pseudomonas aeruginosa Biofilm Eradication
Plasma Medicine, Vol.7, 2017, issue 1
Diana Grondona, Leandro Giuliani, Juliana Soler-Arango, Magali Xaubet, Graciela Brelles-Mariño
Dielectric Barrier Discharge Atmospheric Cold Plasma for Inactivation of Pseudomonas aeruginosa Biofilms
Plasma Medicine, Vol.4, 2014, issue 1-4
P. J. Cullen, Paula Bourke, Dana Ziuzina, Daniela Boehm, S. Patil
Optical Emission Spectroscopy as a Tool for Characterization of Technical Plasmas in Medical Applications
Plasma Medicine, Vol.2, 2012, issue 1-3
Sabrina Baldus, Katharina Stapelmann, Benjamin Denis, Nikita Bibinov , Max Engelhardt, Peter Awakowicz
Effect of Storage Temperature on pH and Conductivity of Reverse Osmosis Water Treated with Atmospheric Plasma
Plasma Medicine, Vol.8, 2018, issue 3
Homero S. Maciel, Fernanda R. Figueira, M. A. R. Ramos, Anelise C.O.C. Doria, Sonia Khouri, Rodrigo Savio Pessoa