Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Plasma Medicine
SJR: 0.198 SNIP: 0.183 CiteScore™: 0.57

ISSN Druckformat: 1947-5764
ISSN Online: 1947-5772

Plasma Medicine

DOI: 10.1615/PlasmaMed.2014011996
pages 137-152

Dielectric Barrier Discharge Atmospheric Cold Plasma for Inactivation of Pseudomonas aeruginosa Biofilms

Dana Ziuzina
Plasma Research Group, College of Science and Health, Dublin Institute of Technology, Dublin 1, Ireland
S. Patil
Plasma Research Group, College of Science and Health, Dublin Institute of Technology, Dublin 1, Ireland
P. J. Cullen
Plasma Research Group, College of Science and Health, Dublin Insitute of Technology, Dublin 1, Ireland; School of Chemical Engineering, University of New South Wales, Sydney, Australia
Daniela Boehm
Plasma Research Group, College of Sciences and Health, Dublin Institute of Technology, Dublin 1, Ireland
Paula Bourke
Plasma Research Group, College of Science and Health, Dublin Insitute of Technology, Dublin 1, Ireland

ABSTRAKT

In recent years, atmospheric cold plasma (ACP) has been widely investigated for potential application as an alternative decontamination technology in biomedical and healthcare sectors. In this study, the antimicrobial efficacy of ACP against Pseudomonas aeruginosa biofilms was investigated. The 48-h biofilms were treated inside sealed polypropylene containers with a high-voltage dielectric barrier discharge (DBD) ACP (80 kVRMS) and subsequently stored for 24 h at room temperature. Treatment for 60 s by either the direct or indirect mode of ACP exposure (inside or outside plasma discharge, respectively) reduced bacterial populations by an average of 5.4 log cycles from an initial 6.6 log10 CFU/mL. Increasing the treatment time from 60 s to 120 s and 300 s reduced biofilms to undetectable levels. According to XTT assay (a metabolic activity assay), an extended treatment time of 300 s was necessary to reduce metabolic activity of cells in biofilms by an average of 70%. Further investigation of biofilm viability by confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM) demonstrated that extended ACP treatment had a detrimental effect on the viability of P. aeruginosa through disintegration of both bacterial cells and the biofilm matrix. The results of this study demonstrate the potential of a novel, in-package, high-voltage ACP decontamination approach for the inactivation of bacterial biofilms.


Articles with similar content:

High-Voltage Atmospheric Cold Plasma Treatment of Yeast for Spoilage Prevention
Plasma Medicine, Vol.7, 2017, issue 2
Kevin M. Keener, S. K. Pankaj, Zifan Wan, William Colonna
Plasma Coagulation Controller: A Low- Power Atmospheric Plasma Source for Accelerated Blood Coagulation
Plasma Medicine, Vol.8, 2018, issue 3
L. Cordaro, S. De Rosa, Paola Brun, B. Zaniol, C. lndolfi, G. Marinaro, Gianluca De Masi, Roberto Cavazzana, C. Gareri, Matteo Zuin, A. Fassina, Emilio Martines
Surfatron-Produced Atmospheric-Pressure Plasma Jet Applied to Candida Biofilms
Plasma Medicine, Vol.8, 2018, issue 4
Homero S. Maciel, Fernanda R. Figueira, Anelise C.O.C. Doria, J. S. B. Lima, Sonia Khouri, S. Pessoa
Induction of Apoptosis by Cold Atmospheric Pressure Plasma for Oral Squamous Cell Carcinoma Cells
Plasma Medicine, Vol.8, 2018, issue 4
Jyh Wei Lee, Chuan Li, Latha Ramireddy, Hui Yu Wu, Jang Hsing Hsieh, Bih Show Low, Chih Ho Lai
Inactivation of Consortiums of Microorganisms by Air Plasma Jet at Atmospheric Pressure
Plasma Medicine, Vol.7, 2017, issue 2
Aliaksandra V. Kazak, Leanid V. Simonchik, N. V. Dudchik, O. E. Nezhvinskaya, A. A. Kirillov