Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Multiphase Science and Technology
SJR: 0.183 SNIP: 0.483 CiteScore™: 0.5

ISSN Druckformat: 0276-1459
ISSN Online: 1943-6181

Multiphase Science and Technology

DOI: 10.1615/MultScienTechn.v25.i1.10
pages 1-23

MODELING OF THE DROPLET ENTRAINMENT FRACTION IN ADIABATIC GAS-LIQUID ANNULAR FLOW

Abdelsalam Al-Sarkhi
King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
C. Sarica
The University of Tulsa, Tulsa, OK, USA

ABSTRAKT

The entrainment fraction, FE, in annular flow is defined as the fraction of the total liquid flow in the form of droplets in the gas core. Its prediction is important for estimation of the pressure drop, liquid holdup, and dry-out in annular flow. A new correlation for the entrainment fraction as a function of the Weber number based on the superficial gas velocity is developed. The proposed correlation contains only two constants that are, in essence, based only on the superficial gas and liquid velocities. The present correlation was validated against the experimental data and models available in the literature. The correlation was found to predict the experimental data available in the literature for different pipe diameters, low and high pressures, single and multi-component fluids, and horizontal to vertical flow, and does not allow negative entrainment values at low liquid flow rates or a very large value that would exceed the maximum possible value.

REFERENZEN

  1. Al-Sarkhi, A. and Sarica, C., Comment on "Correlation of entrainment for annular flow in horizontal pipes", by Pan, L., Hanratty, T. J., Int. J. Multiphase Flow, 28(3), (2002), pp. 385–408. DOI: 10.1016/j.ijmultiphaseflow.2011.01.009

  2. Al-Sarkhi, A. and Sarica, C., Comment on "Droplet entrainment correlation in vertical upward co-current annular two-phase flow", by Sawant, P., Ishii, M., Mori, M., Nuclear Engineering and Design, 238, (2008), pp. 1342–1352. DOI: 10.1016/j.nucengdes.2011.05.021

  3. Al-Sarkhi, A., Sarica, C., and Qureshi, B., Modeling of droplets entrainment in cocurrent annular two-phase flow: A new approach. DOI: 10.1016/j.ijmultiphaseflow.2011.10.008

  4. Assad, A., Lopez de Bertodano, M., and Beus, S., Scaled entrainment measurements in ripple-annular flow in a small tube. DOI: 10.1016/S0029-5493(98)00214-3

  5. Bott, T. R., Fouling of Heat Exchangers, Chemical Engineering Monographs 26.

  6. Cioncolini, A. and Thome, J. R., Prediction of the entrained liquid fraction in vertical annular gas–liquid two-phase flow. DOI: 10.1016/j.ijmultiphaseflow.2009.11.011

  7. Dallman, J. C., Investigation of separated flow model in annular gas–liquid two-phase flow.

  8. Deryabina, O. N., Semenenko, V. F., and Medvedev, A. E., Distribution of the liquid phase in dispersed annular flow.

  9. Fore L. B. and Dukler, A. E., Droplet deposition and momentum transfer in annular flow. DOI: 10.1002/aic.690410904

  10. Ishii, M. and Mishima, K., Droplet entrainment correlation in annular two-phase flow. DOI: 10.1016/0017-9310(89)90155-5

  11. Kataoka, I. and Ishii, M., Mechanism and correlation of droplet entrainment and deposition in annular two-phase flow.

  12. Laurinat, J. E., Studies on the effects of pipe size on horizontal annular two-phase flows.

  13. Lopez de Bertodano, M. A., Assad A., and Beus, S. G., Experiments for entrainment rate of droplets in the annular regime. DOI: 10.1016/S0301-9322(00)00046-X

  14. Magrini, K., Liquid entrainment in annular gas–liquid flow in inclined pipes.

  15. Mantilla, I., Gomez, L., Mohan, R., Shoham, O., Kouba, G, and Roberts, R., Experimental investigation of liquid entrainment in gas in horizontal pipes. DOI: 10.1115/FEDSM2009-78420

  16. Mantilla, I., Gomez, L., Mohan, R., Shoham, O., Kouba, G, and Roberts, R., Modeling of liquid entrainment in gas in horizontal pipes. DOI: 10.1115/FEDSM2009-78459

  17. Mantilla, I., Viana, F., Kouba, G., and Roberts, R., Experimental investigation of liquid entrainment in gas at high pressure.

  18. Ogata, K., System Dynamics.

  19. Oliemans, R. V., Pots, B. F., and Trompe, N., Modeling of annular dispersed two-phase flow in vertical pipes. DOI: 10.1016/0301-9322(86)90047-9

  20. Ousaka, A. and Kariyasaki, A., Distribution of entrainment flow rate for air–water annular twophase flow in a horizontal tube.

  21. Owen, D. G., Hewitt, G. F., and Bott, T. R., Equilibrium annular flows at high mass fluxes: Data and interpretation.

  22. Pan, L. and Hanratty, T. J., Correlation of entrainment for annular flow in horizontal pipes. DOI: 10.1016/S0301-9322(01)00074-X

  23. Pan, L. and Hanratty, T. J., Correlation of entrainment for annular flow in vertical pipes. DOI: 10.1016/S0301-9322(01)00073-8

  24. Sawant, P., Ishii, M., and Mori, M., Droplet entrainment correlation in vertical upward co-current annular two-phase flow. DOI: 10.1016/j.nucengdes.2007.10.005

  25. Sawant, P., Ishii, M., and Mori, M., Prediction of amount of entrained droplets in vertical annular two-phase flow. DOI: 10.1016/j.ijheatfluidflow.2009.03.003

  26. Schadel, S. A. and Hanratty, T. J., Interpretation of atomization rates of the liquid film in gas liquid annular flow. DOI: 10.1016/0301-9322(89)90018-9

  27. Schubring, D. and Shedd, T. A., A model for pressure loss, film thickness, and entrained fraction for gas–iquid annular flow. DOI: 10.1016/j.ijheatfluidflow.2011.02.010

  28. Wallis, G. B., One-Dimensional Two-Phase Flow.


Articles with similar content:

ONE-DIMENSIONAL MODEL FOR NUMERICAL SIMULATION OF ANNULAR FLOW IN HORIZONTAL AND VERTICAL PIPES
Multiphase Science and Technology, Vol.25, 2013, issue 1
Raad I. Issa, Mohammad Emamzadeh
GAS-LIQUID TWO-PHASE FLOW AND BOILING IN MINI AND MICROCHANNELS
Multiphase Science and Technology, Vol.15, 2003, issue 1-4
S. Mostafa Ghiaasiaan
EXPERIMENTAL AND ANALYTICAL STUDIES OF GAS ENTRAINMENT PHENOMENA IN SLUG FLOW IN HORIZONTAL AND NEAR HORIZONTAL PIPES
Multiphase Science and Technology, Vol.17, 2005, issue 1-2
I. G. Manolis, Geoffrey F. Hewitt, Colin P. Hale, M. A. Mendes, W. L. Wong, S. M. Richardson
INVESTIGATION OF A COAXIAL AIR-BLAST ATOMIZER USING PARTICLE IMAGE VELOCIMETRY AND COMPUTATIONAL FLUID DYNAMICS
Atomization and Sprays, Vol.18, 2008, issue 8
Zhen Wang, Daniel P. Hoeg, Raymond N. Laoulache, Peter Friedman
STEADY-STATE AND TRANSIENT HEAT TRANSFER PHENOMENA OF WATER: AN EXPERIMENTAL AND THEORETICAL INVESTIGATION AT NEAR-CRITICAL PRESSURES
International Heat Transfer Conference 16, Vol.4, 2018, issue
Andreas Kohlhepp, Gerrit A. Schatte, Tobias Gschnaidtner, Hartmut Spliethoff, Christoph Wieland