Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
International Journal for Multiscale Computational Engineering
Impact-faktor: 1.016 5-jähriger Impact-Faktor: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN Druckformat: 1543-1649
ISSN Online: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.v2.i1.10
14 pages

Multiscale Mechanics of Nonlocal Effects in Microheterogeneous Materials

Valeriy A. Buryachenko
Civil Engineering Department, University of Akron, Akron, Ohio 44325-3901, USA and Micromechanics and Composites LLC, 2520 Hingham Lane, Dayton, Ohio 45459, USA

ABSTRAKT

We consider a linearly thermoelastic composite medium, which consists of a homogeneous matrix containing either deterministic (periodic and non-periodic) or random (statistically homogeneous and inhomogeneous, so-called graded) field of inclusions. For functionally graded materials when the concentration of the inclusions is a function of the coordinates, the micromechanical approach is based on the generalization of the "multiparticle effective field" method, previously proposed for statistically homogeneous random structure composites by the author (see for references and details Buryachenko, Appl. Mech. Reviews 2001, 54, 1-47). Both the Fourier transform method and iteration method are analyzed. The nonlocal integral and differential effective operators of elastic effective properties are estimated. The nonlocal dependencies of the effective elastic moduli as well as of conditional averages of the strains in the components on the concentration of the inclusions in a certain neighborhood of point considered are detected; the scale effect is discovered. The proposed theory provides the bridging of length scales which is a paramount factor in understanding and controlling material microinhomogeneity at the microscale and interpreting them at the macroscale. The combined coupled concept of introducing both the integral and differential operator linking microscale and macroscale enables one to address two issues simultaneously.


Articles with similar content:

RANDOM RESIDUAL STRESSES IN ELASTICITY HOMOGENEOUS MEDIUM WITH INCLUSIONS OF NONCANONICAL SHAPE
International Journal for Multiscale Computational Engineering, Vol.10, 2012, issue 3
Valeriy A. Buryachenko, Michele Brun
Estimation of Effective Elastic Properties of Random Structure Composites for Arbitrary Inclusion Shape and Anisotropy of Components Using Finite Element Analysis
International Journal for Multiscale Computational Engineering, Vol.2, 2004, issue 1
Valeriy A. Buryachenko, G. P. Tandon
GENERAL INTEGRAL EQUATIONS OF MICROMECHANICS OF HETEROGENEOUS MATERIALS
International Journal for Multiscale Computational Engineering, Vol.13, 2015, issue 1
Valeriy A. Buryachenko
COMPUTING GREEN'S FUNCTIONS FOR FLOW IN HETEROGENEOUS COMPOSITE MEDIA
International Journal for Uncertainty Quantification, Vol.3, 2013, issue 1
David A. Barajas-Solano, Daniel M. Tartakovsky
UNCERTAINTY QUANTIFICATION IN LOW-FREQUENCY DYNAMICS OF COMPLEX BEAM-LIKE STRUCTURES HAVING A HIGH-MODAL DENSITY
International Journal for Uncertainty Quantification, Vol.3, 2013, issue 6
Anas Batou, Christian Soize