Abo Bibliothek: Guest
International Journal for Multiscale Computational Engineering

Erscheint 6 Ausgaben pro Jahr

ISSN Druckformat: 1543-1649

ISSN Online: 1940-4352

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.4 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 2.2 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00034 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.46 SJR: 0.333 SNIP: 0.606 CiteScore™:: 3.1 H-Index: 31

Indexed in

Multiscale Analysis and Numerical Modeling of the Portevin-Le Chatelier Effect

Volumen 3, Ausgabe 2, 2005, pp. 227-237
DOI: 10.1615/IntJMultCompEng.v3.i2.70
Get accessGet access

ABSTRAKT

The Portevin-Le Chatelier (PLC) effect refers to one type of plastic instability, which often manifests itself as discontinuous yielding and localized deformation in some metallic alloys deformed under certain conditions. A phenomenological model based on a multiscale analysis is developed to investigate the PLC effect. In this model, a new component of stress is introduced, which takes account of the collective interactions between mobile dislocations and solute atoms, to describe the influence of dynamic strain aging (DSA) on the flow stress. The effects of microscopic pinning and unpinning of dislocations on the macroscopic deformation behavior are considered in an integrative and competitive manner. Due to the competition of these two effects during deformation, the alloys may exhibit the negative strain rate sensitivity of flow stress, which is a necessary condition for the occurrence of the PLC effect. A nonuniform spatial distribution of some material parameters was used in the model to reflect the heterogeneous nature of the deformed material, including a linear change of the initial cross-sectional area and a random perturbation of the initial internal stress. Numerical simulations based on this heterogeneous model were carried out for tensile testing of aluminum alloy 2017, by which the serrated yielding and localized deformation behavior were successfully reproduced. The results also indicate the relation between the macroscopic jerky flow and the pinning/unpinning of dislocations at the micro level.

REFERENZIERT VON
  1. Chen Z. J, Zhang Q. C, Wu X. P, Dynamic interaction between dislocation and diffusing solutes, Europhysics Letters (EPL), 71, 2, 2005. Crossref

  2. Gribov Dmitriy, Popov Fedor, Chechulina Eugenia, The Three-Level Model to Describe Serrated Yielding: Structure, Algorithm, Implementation, Results, in High-Performance Computing Systems and Technologies in Scientific Research, Automation of Control and Production, 1304, 2020. Crossref

Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen Preise und Aborichtlinien Begell House Kontakt Language English 中文 Русский Português German French Spain