Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
International Journal for Multiscale Computational Engineering
Impact-faktor: 1.016 5-jähriger Impact-Faktor: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN Druckformat: 1543-1649
ISSN Online: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.v4.i5-6.70
pages 663-692

Microstructure-Based Multiscale Constitutive Modeling of γ — γ′ Nickel-Base Superalloys

A.-J. Wang
Onity, Inc., Norcross, GA
R. S. Kumar
ABAQUS, Inc., Providence, RI
M. M. Shenoy
G.W.W. School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0405
David L. McDowell
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA; GWW School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA

ABSTRAKT

A hierarchical system of microstructure-based constitutive models for cyclic deformation and low cycle fatigue (LCF) behavior of two-phase nickel-base superalloys is developed and implemented. Both precipitate (γ′) and matrix (γ) phases with or without smaller dispersed precipitates are explicitly modeled using crystal viscoplasticity theory with dislocation density as an internal state variable. The constitutive models are capable of capturing most of the important features of the deformation behavior of Ni-base superalloys, namely, (i) anomalous yield stress behaviors with respect to temperature and tension-compression asymmetry of flow stress due to non-Schmid effects; (ii) crystallographic orientation dependence represented by the crystal plasticity model; (iii) effects of γ′ precipitate size and spacing on initial yield strength and work hardening; and (iv) effects of precipitate distribution and morphology on localized cyclic plastic shear strain. The physically based hardening laws are employed to evolve dislocation densities for both phases in each slip system with consideration of dislocation interaction mechanisms. This type of' microstructure-sensitive constitutive model is applicable to the study of the effects of variability of microstructure on variability of LCF and creep behaviors or properties. A combined bottom-up and top-down strategy is used to determine model parameters to support simulations at length scales ranging from approximately 100 nm up to hundreds of microns. Models for γ′ precipitates are calibrated using bulk Ni3Al single-crystal data. The γ — γ′ two-phase models are calibrated for several superalloys and strain histories, providing good agreement with experiments. The utility of such models in modeling behavior at several characteristic length scales is briefly discussed.


Articles with similar content:

STOCHASTIC PROCESSES OF {1012} DEFORMATION TWINNING IN HEXAGONAL CLOSE-PACKED POLYCRYSTALLINE ZIRCONIUM AND MAGNESIUM
International Journal for Multiscale Computational Engineering, Vol.9, 2011, issue 4
Irene J. Beyerlein, R. J. McCabe, C. N. Tome
THERMODYNAMICALLY CONSISTENT APPROACH FOR ONE-DIMENSIONAL PHENOMENOLOGICAL MODELING OF SHAPE MEMORY ALLOYS
International Journal for Multiscale Computational Engineering, Vol.17, 2019, issue 4
Y. Charles Lu, Chetan S. Jarali, S. Raja, Ravishankar N. Chikkangoudar, Jacob Fish, Subhas F. Patil
VALIDATION OF THE DUAL-PHASE STEEL FAILURE MODEL AT THE MICROSCALE
International Journal for Multiscale Computational Engineering, Vol.15, 2017, issue 5
Yuriy Ososkov, Lukasz Madej, David S. Wilkinson, Konrad Perzyński, Mukesh Jain, Jiangting Wang
A MULTISCALE MICRO-CONTINUUM MODEL TO CAPTURE STRAIN LOCALIZATION IN COMPOSITE MATERIALS
International Journal for Multiscale Computational Engineering, Vol.10, 2012, issue 5
Thibaud Chevalier, Franck J. Vernerey
Multiscale Analysis and Numerical Modeling of the Portevin-Le Chatelier Effect
International Journal for Multiscale Computational Engineering, Vol.3, 2005, issue 2
Xiaoping Wu, Qingchuan Zhang, Zhongjia Chen