Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
International Journal for Multiscale Computational Engineering
Impact-faktor: 1.016 5-jähriger Impact-Faktor: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN Druckformat: 1543-1649
ISSN Online: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.2015014164
pages 463-474

EXACT SOLUTION FOR FREE VIBRATION ANALYSIS OF FUNCTIONALLY GRADED MICROPLATES BASED ON THE STRAIN GRADIENT THEORY

H. Farahmand
Department of Mechanical Engineering, Islamic Azad University of Kerman Branch, Kerman, Iran
M. Mohammadi
Young Researchers and Elites Club, Kerman Branch, Islamic Azad University, Kerman, Iran
A. Iranmanesh
Department of Civil Engineering, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
S. S. Naseralavi
Department of Civil Engineering, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran

ABSTRAKT

This paper deals with free vibration analysis of thin functionally graded rectangular microplates. Along with classical plate theory, strain gradient theory is implemented to capture microstructure effects. Using the variational approach and the principle of minimum total potential energy, the governing equations for rectangular microplates are developed. In accordance with the functionally graded distribution of material properties through the thickness, higherorder governing equations are coupled in terms of displacement fields. Applying a new and novel methodology, these equations are decoupled, with the special benefit of being solved analytically. Using the variational approach all simply supported, clamped and free boundary conditions are determined. Consequently, on the basis of the Navier solution, free vibrational analysis of simply supported rectangular microplates is carried out. Finally the effects of material properties, microstructure parameters and dimensions on the nondimensional natural frequencies of microplates are explored. Also, it is shown that length scale parameters affect both governing equations and boundary conditions.


Articles with similar content:

Parametric Vibrations of Three-Layer Piezoelectric Shells of Revolution
International Journal of Fluid Mechanics Research, Vol.30, 2003, issue 1
V. I. Kozlov, O. V. Karnaukhova, A. O. Rasskazov
NAVIER SOLUTION FOR STATIC ANALYSIS OF FUNCTIONALLY GRADED RECTANGULAR MICROPLATES
International Journal for Multiscale Computational Engineering, Vol.11, 2013, issue 4
H. Farahmand , M. Mohammadi
BUCKLING OF FGM TIMOSHENKO MICROBEAMS UNDER IN-PLANE THERMAL LOADING BASED ON THE MODIFIED STRAIN GRADIENT THEORY
International Journal for Multiscale Computational Engineering, Vol.11, 2013, issue 4
M. Faghih Shojaei, S. Sahmani, R. Ansari, V. Mohammadi, R. Gholami
BENDING OF A THIN RECTANGULAR ISOTROPIC PLATE: A COSSERAT ELASTICITY ANALYSIS
Composites: Mechanics, Computations, Applications: An International Journal, Vol.8, 2017, issue 4
Soumen Shaw
NONLINEAR STABILITY ANALYSIS OF AN FGM PLATE UNDER NONUNIFORM IN-PLANE LOADING
Composites: Mechanics, Computations, Applications: An International Journal, Vol.10, 2019, issue 3
Kanishk Sharma, Anil Gite, Dinesh Kumar