Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
International Journal for Multiscale Computational Engineering
Impact-faktor: 1.016 5-jähriger Impact-Faktor: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN Druckformat: 1543-1649
ISSN Online: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.2012002565
pages 261-279

RANDOM RESIDUAL STRESSES IN ELASTICITY HOMOGENEOUS MEDIUM WITH INCLUSIONS OF NONCANONICAL SHAPE

Valeriy A. Buryachenko
Civil Engineering Department, University of Akron, Akron, Ohio 44325-3901, USA and Micromechanics and Composites LLC, 2520 Hingham Lane, Dayton, Ohio 45459, USA
Michele Brun
Department of Structural Engineering, University of Cagliari, 09124 Cagliari, Italy ; Istituto Officina dei Materiali del CNR (CNR-IOM) Unita SLACS, Cittadella Universitaria, 09042 Monserrato (Ca), Italy

ABSTRAKT

We consider a linearly elastic composite medium, which consists of a homogeneous matrix containing a statistically inhomogeneous random set of noncanonical inclusions. The elastic properties of the matrix and the inclusions are the same, but the stress-free strains are different. The new general volume integral equation (VIE) is proposed. These equations are obtained by a centering procedure without any auxiliary assumptions such as the effective field hypothesis implicitly exploited in the known centering methods. The results of this abandonment are quantitatively estimated for some modeled composite with homogeneous fibers of nonellipsoidal shape. New effects are detected that are impossible within the framework of a classical background of micromechanics.

REFERENZEN

  1. ABAQUS, Theory Manual for Version 6.2-1.

  2. Bahei-El-Din, Y. A., Khire, R., and Hajela, P., Multiscale transformation field analysis of progressive damage in fibrous laminates. DOI: 10.1615/IntJMultCompEng.v8.i1.60

  3. Balas, J., Sladek, J., and Sladek, V., Stress Analysis by Boundary Element Methods.

  4. Benveniste, Y., A new approach to application of Mori-Tanaka's theory in composite materials. DOI: 10.1016/0167-6636(87)90005-6

  5. Brebbia, C. A., Telles, J. C. F., and Wrobel, L. C., Boundary Element Techniques.

  6. Buryachenko, V. A., Micromechanics of Heterogeneous Materials.

  7. Buryachenko, V. A., On some background of random structure matrix composites materials.

  8. Buryachenko, V. A., On the thermo-elastostatics of heterogeneous materials. DOI: 10.1007/s00707-010-0282-0

  9. Buryachenko, V. A., On the thermo-elastostatics of heterogeneous materials. II. Analyze and generalization of some basic hypotheses and propositions. DOI: 10.1007/s00707-010-0283-z

  10. Buryachenko, V. A. and Kushch, V. I., Statistical properties of local residual microstresses in elastically homogeneous composite half-space. DOI: 10.1615/IntJMultCompEng.v4.i5-6.90

  11. Buryachenko, V. A. and Parton, V. Z., One-particle approximation of the effective field method in the statics of composites. DOI: 10.1007/BF00613104

  12. Cutler, R. A. and Vircar, A. V., The effect of binder thickness and residual stresses on the fracture toughness of cement carbide. DOI: 10.1007/BF01113762

  13. Eshelby, J. D., The determination of the elastic field of an ellipsoidal inclusion, and related problems. DOI: 10.1098/rspa.1957.0133

  14. Filatov, A. N. and Sharov, L. V., Integral Inequalities and the Theory of Nonlinear Oscillations.

  15. Fish, J. and Belytschko, T., A First Course in Finite Elements.

  16. Hansen, J. P. and McDonald, I. R., Theory of Simple Liquids.

  17. Khoroshun, L. P., Prognosis of thermoelastic properties of materials reinforced by unidirectional discrete fibers.

  18. Khoroshun, L. P., Random functions theory in problems on the macroscopic characteristics of microinhomogeneous media.

  19. Kreher, W., Internal stresses and relations between effective thermoelastic properties of stochastic solids–some exact solutions. DOI: 10.1002/zamm.19880680311

  20. Kreher, W., Residual stresses and stored elastic energy of composites and polycrystals. DOI: 10.1016/0022-5096(90)90023-W

  21. Kreher, W. and Molinari, A., Residual stresses in polycrystals as influenced by grain shape and texture. DOI: 10.1016/0022-5096(93)90075-Q

  22. Kreher, W. and Pompe, W., Internal Stresses in Heterogeneous Solids.

  23. Lax, M., Multiple scattering of waves II. The effective fields dense systems. DOI: 10.1103/PhysRev.85.621

  24. Lekhnitskii, A. G., Theory of Elasticity of an Anisotropic Elastic Body.

  25. Luo, J. and Stevens, R., Residual stress and microcracking in Sic-MgO composites. DOI: 10.1016/0955-2219(93)90006-D

  26. Markov, K. Z., Elementary micromechanics of heterogeneous media. DOI: 10.1007/978-1-4612-1332-1_1

  27. Mori, T. and Tanaka, K., Average stress in matrix and average elastic energy of materials with misfitting inclusions. DOI: 10.1016/0001-6160(73)90064-3

  28. Mossotti, O. F., Discussione analitica sul'influenza che l'azione di un mezzo dielettrico ha sulla distribuzione dell'electricita alla superficie di piú corpi elettrici disseminati in eso.

  29. Ponte Castañeda, P. andWillis, J. R., The effect of spatial distribution on the effective behavior of composite materials and cracked media. DOI: 10.1016/0022-5096(95)00058-Q

  30. Sawant, S. and Muliana, A., A multiscale framework for analyzing thermo-viscoelastic behavior of fiber metal laminates. DOI: 10.1615/IntJMultCompEng.v7.i4.80

  31. Scaife, B. K. P., Principle of Dielectrics.

  32. Shermergor, T. D., The Theory of Elasticity of Microinhomogeneous Media.

  33. Torquato, S., Random Heterogeneous Materials: Microstructure and Macroscopic Properties.

  34. Torquato, S. and Lado, F., Improved bounds on the effective elastic moduli of cylinders. DOI: 10.1115/1.2899429

  35. Willis, J. R., Bounds and self-consistent estimates for the overall properties of anisotropic composites. DOI: 10.1016/0022-5096(77)90022-9

  36. Willis, J. R., Variational principles and bounds for the overall properties of composites.

  37. Willis, J. R., Variational and related methods for the overall properties of composites. DOI: 10.1016/S0065-2156(08)70330-2

  38. Zienkiewicz, O. Z., Taylor, R. L., and Taylor, R. L., The Finite Element Method for Solid and Structural Mechanics.


Articles with similar content:

MODELING THE STRESS−STRAIN BEHAVIOR OF SHUNGITE PARTICLE-FILLED RUBBERS
Nanoscience and Technology: An International Journal, Vol.6, 2015, issue 4
A. V. Babaytsev, Yu. V. Kornev, N. A. Semenov
Estimation of Effective Elastic Properties of Random Structure Composites for Arbitrary Inclusion Shape and Anisotropy of Components Using Finite Element Analysis
International Journal for Multiscale Computational Engineering, Vol.2, 2004, issue 1
Valeriy A. Buryachenko, G. P. Tandon
DEFORMATION OF A THIN LAYER THAT IS BONDED TO A MASSIVE SUBSTRATE IN THE THEORY OF THERMOELASTIC MATERIALS WITH VOIDS
Nanoscience and Technology: An International Journal, Vol.5, 2014, issue 1
Yury Solyaev, Sergey A. Lurie
LOW-FREQUENCY WAVE PROPAGATION IN GEOLOGICAL MEDIA WITH ISOLATED CRACKS
Composites: Mechanics, Computations, Applications: An International Journal, Vol.8, 2017, issue 2
A. N. Vlasov, Alexey Talonov, Viktoria Savatorova
Formal Description of the Haar Discrete Transforms
Journal of Automation and Information Sciences, Vol.35, 2003, issue 9
Vladimir G. Ivanov