Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
International Journal for Multiscale Computational Engineering
Impact-faktor: 1.016 5-jähriger Impact-Faktor: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN Druckformat: 1543-1649
ISSN Online: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.v7.i4.20
pages 251-261

Modeling of Structure Evolution of Filled Elastomers under Uniaxial Elongation

Bernd Lauke
Leibniz-Institut für Polymerforschung Dresden e.V., 01069 Dresden, Germany
I. A. Morozov
Institute of Continuous Media Mechanics, Ural Branch of the Russian Academy of Sciences, 1 Acad. Korolev Str, Perm, 614013, Russia and Perm State National Research University, 15 Bukerev Str., Perm, 614990, Russia


The evolution of filler network structure in elastomers during elongation is investigated on the basis of computer modeling. The filler network is represented by spherical particles of different sizes, which are randomly filling a prismatic volume. No physical interaction forces between the particles on the molecular level are considered. The modeling is based on geometrical obstructions of particle ensembles. Interpenetrations of rigid particles during modeling of filling and subsequent stretching are forbidden, and only a minimal finite distance between the particles is allowed. The material is assumed to be incompressible. It was found that the number of nearest neighbors (coordination number) in a loosely filled material increases during stretching; however, in a densely filled material, this value decreases. The analysis of the size of unfilled spaces in the matrix has shown the occurrence of essential structural heterogeneities in the filler network. Stretching of a densely filled material results in appreciable mixing of particles whereby changes of the distances between originally neighboring particles exceed the macroscopic elongation of the material by several times. An analytical relation between the elongation of the composite and polymer chains via transmission ratio is proposed.


  1. Wypych, G., Handbook of Fillers.

  2. Medalia, A., Filler aggregates and their effect on reinforcement.

  3. Klueppel, M., The role of disorder in filler reinforcement of elastomers on various length scales. DOI: 10.1007/b11054

  4. Karasek, L. and Sumita, M., Characterization of dispersion state of filler and polymer-filler interactions in rubber-carbon black composites. DOI: 10.1007/BF01139141

  5. Fukahori, Y., Carbon black reinforcement of rubber (1): General rules of reinforcement.

  6. Gruber, T. C. and Zerda, T. W., 3D morphological characterization of carbon-black aggregates using transmission electron microscopy. DOI: 10.5254/1.3538674

  7. Klueppel, M. and Heinrich, G., Fractal structures in carbon black reinforced rubbers. DOI: 10.5254/1.3538763

  8. Schneider, G. J. and Fink, S. A., Threedimensional structure of precipitated silica as determined by electron tomography.

  9. Morozov, I. A., Svistkov, A. L., Lauke, B., and Heinrich, G., Structure of carbon-blackparticles framework in filled elastomer materials. DOI: 10.1134/S0965545X07030091

  10. Garishin, O. C., Structural mechanical model of grain composite with a damageable rubbery matrix.

  11. Moshev, V. V. and Garishin, O. K., Strukturnaja mehanika dispersno-napolnennyh elastomernih kompositov.

  12. Moshev, V. V. and Garishin, O. K., Deformation of filler morphology in strained carbon black loaded rubbers: A study by atomic force microscope. DOI: 10.5254/1.3538764

  13. Hagita, K., Arai, T., Kishimoto, H., Umesaki, N., Suno, H., Shinohara, Y., and Amerniya, Y., Structural changes of silica particles in elongated rubber by two dimensional small-angle X-ray scattering and extended reverse Monte Carlo analysis. DOI: 10.1007/s00397-008-0272-5

  14. Rhaby, Y., Cabane, B., and Vacher, A., Joanicot, M., and Boue, F., Modes of deformation in soft/hard nanocomposite: A SANS study. DOI: 10.1209/epl/i1999-00287-1

  15. Yamaguchi, K., Busfield, J. J. C., and Thomas, A. G., Electrical and mechanical behavior of filled elastomers. I. The effect of strain. DOI: 10.1002/polb.10571

  16. Stoyan, D. and Kendall, W. S., Stochastic Geometry and Its Application.

  17. Bezrukov, A., Stoyan, D., and Bargiel, M., Spatial statistics for simulated packings of spheres. DOI: 10.5566/ias.v20.p203-206

  18. Bezrukov, A., Bargiel, M., and Stoyan, D., Statistical analysis of simulated random packings of spheres. DOI: 10.1002/1521-4117(200205)19:2<111::AID-PPSC111>3.0.CO;2-M

  19. Jodrey, W. S. and Torz, W. M., Simulation of random packing of spheres. DOI: 10.1177/003754977903200102

  20. Yang, A., Miller, C. T., and Turcoliver, L. D., Simulation of correlated and uncorrelated packing of random size spheres. DOI: 10.1103/PhysRevE.53.1516

  21. Bargiel, M. and Moscinski, J., C-language program for the irregular close packing of hard spheres. DOI: 10.1016/0010-4655(91)90060-X

  22. Klueppel, M., Schuster, R. H., and Heinrich, G., Structure and properties of reinforcing fractal filler networks in elastomers. DOI: 10.5254/1.3538429

  23. Morozov, I., Svistkov, A., Lauke, B., and Heinrich, G., Computer modeling and examination of structural properties of carbon black reinforced rubber.

  24. Meissner, B., Theory of bound rubber. DOI: 10.1002/app.1974.070180826

  25. Wolff, S., Wang, M. J., and Tan, E. H., Fillerelastomer interactions. Part VII. Study on bound rubber. DOI: 10.5254/1.3538304

  26. Fukahori, Y., New progress in the theory and model of carbon black reinforcement of elastomers. DOI: 10.1002/app.20802

  27. Meissner, B., Bound rubber theory and experiment. DOI: 10.1002/app.1993.070500210

  28. Kraus, G., Mechanical losses in carbon-black filled rubbers.

  29. Stoyan, D. and Stoyan, H., Fractals, random shapes and point fields.

  30. Witten, T. A., Rubinstein, M., and Colby, R. H., Reinforcement of rubber by fractal aggregates. DOI: 10.1051/jp2:1993138

  31. Fukahori, Y., The mechanics and mechanism of the carbon black reinforcement of elastomers. DOI: 10.5254/1.3547760

  32. Svistkov, A. L., Lauke, B., and Heinrich, G., Modeling of viscoelastic properties and softening of rubber materials.

  33. Svistkov, A. L., Lauke, B., and Heinrich, G., Model of elastomer reinforcement by carbon black.