Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
International Journal for Multiscale Computational Engineering
Impact-faktor: 1.016 5-jähriger Impact-Faktor: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN Druckformat: 1543-1649
ISSN Online: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.v5.i3-4.120
pages 325-349

Adiabatic Shear Band Localizations in BCC Metals at High Strain Rates and Various Initial Temperatures

Farid H. Abed
Department of Civil Engineering and Construction, Bradley University, Peoria, IL 61625, USA
George Voyiadjis
Louisiana State University

ABSTRAKT

In general, metal structures display a strong rate and temperature dependence when deformed nonuniformly into the inelastic range. This effect has important implications for an increasing number of applications in structural and engineering mechanics. The mechanical behavior of these applications cannot be characterized by classical (rate-independent) continuum theories because they incorporate no material length scales. It is therefore necessary to develop a rate-dependent (viscoplasticity) continuum theory bridging the gap between the classical continuum theories and the microstructure simulations. A finite strain hypoelastoviscoplastic framework is developed for body-centered cubic metals using the corotational formulation approach. Material length scales are implicitly introduced into the governing equations through material rate dependency (viscosity). An implicit objective stress update, which is an efficient algorithm for the type of nonlinear problems considered here, is employed. The effectiveness of the present approach is tested by studying strain localizations in a simple tensile plane strain problem and in a cylindrical hat-shaped sample over a wide range of initial temperatures and strain rates. The finite element simulations of material instability problems converge to meaningful results on further refinement of the finite element mesh. Comparisons of the simulation results of adiabatic shear localizations are also made, with experimental results conducted by different authors. Results indicate an excellent performance of the present framework in describing the strain localization problem for niobium, vanadium, and tantalum.


Articles with similar content:

Multiscale Analysis and Numerical Modeling of the Portevin-Le Chatelier Effect
International Journal for Multiscale Computational Engineering, Vol.3, 2005, issue 2
Xiaoping Wu, Qingchuan Zhang, Zhongjia Chen
BUCKLING OF FGM TIMOSHENKO MICROBEAMS UNDER IN-PLANE THERMAL LOADING BASED ON THE MODIFIED STRAIN GRADIENT THEORY
International Journal for Multiscale Computational Engineering, Vol.11, 2013, issue 4
M. Faghih Shojaei, S. Sahmani, R. Ansari, V. Mohammadi, R. Gholami
Continuum and Atomistic Modeling of the Mixed Straight Dislocation
International Journal for Multiscale Computational Engineering, Vol.8, 2010, issue 3
Toby D. Young, Pawel Dluzewski, George P. Dimitrakopulos, Philomela Komninou
Symmetric Mesomechanical Model for Failure Analysis of Heterogeneous Materials
International Journal for Multiscale Computational Engineering, Vol.8, 2010, issue 5
Caglar Oskay, Robert Crouch
A Multiscale Finite Element Approach for Buckling Analysis of Elastoplastic Long Fiber Composites
International Journal for Multiscale Computational Engineering, Vol.8, 2010, issue 3
Julien Yvonnet, Hamid Zahrouni, Michel Potier-Ferry, Saeid Nezamabadi