Abo Bibliothek: Guest
International Journal for Multiscale Computational Engineering

Erscheint 6 Ausgaben pro Jahr

ISSN Druckformat: 1543-1649

ISSN Online: 1940-4352

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.4 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 2.2 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00034 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.46 SJR: 0.333 SNIP: 0.606 CiteScore™:: 3.1 H-Index: 31

Indexed in

Size of a Representative Volume Element in a Second-Order Computational Homogenization Framework

Volumen 2, Ausgabe 4, 2004, 24 pages
DOI: 10.1615/IntJMultCompEng.v2.i4.50
Get accessGet access

ABSTRAKT

In this paper the intrinsic role of the size of the microstructural representative volume element (RVE) in a second-order computational homogenization is investigated. The presented second-order computational homogenization is an extension of the classical first-order computational homogenization scheme and is based on a proper incorporation of the macroscopic gradient of the deformation tensor and the associated higher-order stress measure into the multiscale framework. The macroscopic homogenized continuum obtained through this scheme is the full second gradient continuum. It is demonstrated with several examples that the size of the microstructural RVE used in a second-order computational homogenization scheme may be related to the length scale of the associated macroscopic homogenized higher-order continuum. It is shown that the analytical second-order homogenization of a microstructurally homogeneous linearly elastic material leads to the second gradient elastic Mindlin's continuum on the macroscale, where the resulting macroscopic length scale parameter is proportional to the RVE size. Several numerical microstructural and multiscale analyses reveal the significance of the contribution of the physical and geometrical nonlinearities in the relation between the RVE size and the calculated macroscopic response. Based on the obtained results, some conclusions are drawn with respect to the choice of the microstructural RVE in the second-order computational homogenization analysis.

REFERENZIERT VON
  1. Das Sonjoy, Ghanem Roger, A Bounded Random Matrix Approach for Stochastic Upscaling, Multiscale Modeling & Simulation, 8, 1, 2009. Crossref

  2. Geers M G D, Coenen E W C, Kouznetsova V G, Multi-scale computational homogenization of structured thin sheets, Modelling and Simulation in Materials Science and Engineering, 15, 4, 2007. Crossref

  3. Kaczmarczyk Łukasz, Pearce Chris J., Bićanić Nenad, Scale transition and enforcement of RVE boundary conditions in second-order computational homogenization, International Journal for Numerical Methods in Engineering, 74, 3, 2008. Crossref

  4. Temizer İ., Wriggers P., A micromechanically motivated higher-order continuum formulation of linear thermal conduction, ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 90, 10-11, 2010. Crossref

  5. Özdemir I., Brekelmans W. A. M., Geers M. G. D., Computational homogenization for heat conduction in heterogeneous solids, International Journal for Numerical Methods in Engineering, 73, 2, 2008. Crossref

  6. Larsson Ragnar, Diebels Stefan, A second-order homogenization procedure for multi-scale analysis based on micropolar kinematics, International Journal for Numerical Methods in Engineering, 69, 12, 2007. Crossref

  7. Jänicke Ralf, Diebels Stefan, Sehlhorst Hans-Georg, Düster Alexander, Two-scale modelling of micromorphic continua, Continuum Mechanics and Thermodynamics, 21, 4, 2009. Crossref

  8. Khisaeva Z. F., Ostoja-Starzewski M., On the Size of RVE in Finite Elasticity of Random Composites, Journal of Elasticity, 85, 2, 2006. Crossref

  9. Coenen E. W. C., Kouznetsova V. G., Geers M. G. D., Computational homogenization for heterogeneous thin sheets, International Journal for Numerical Methods in Engineering, 83, 8-9, 2010. Crossref

  10. Askes Harm, Aifantis Elias C., Gradient elasticity in statics and dynamics: An overview of formulations, length scale identification procedures, finite element implementations and new results, International Journal of Solids and Structures, 48, 13, 2011. Crossref

  11. Forest S., Trinh D.K., Generalized continua and non-homogeneous boundary conditions in homogenisation methods, ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 91, 2, 2011. Crossref

  12. Gal Erez, Kryvoruk Roman, Meso-scale analysis of FRC using a two-step homogenization approach, Computers & Structures, 89, 11-12, 2011. Crossref

  13. Temizer İ., Wriggers P., An adaptive multiscale resolution strategy for the finite deformation analysis of microheterogeneous structures, Computer Methods in Applied Mechanics and Engineering, 200, 37-40, 2011. Crossref

  14. Kaczmarczyk Łukasz, Pearce Chris J., Bićanić Nenad, Studies of microstructural size effect and higher-order deformation in second-order computational homogenization, Computers & Structures, 88, 23-24, 2010. Crossref

  15. Nitka M., Tejchman J., A Two-Scale Numerical Approach to Granular Systems / Wybrane Problemy Szacowania Prawdopodobienstwa Zawodu W Sytuacji Pozaru, Archives of Civil Engineering, 57, 3, 2011. Crossref

  16. Geers M.G.D., Kouznetsova V.G., Brekelmans W.A.M., Multi-scale computational homogenization: Trends and challenges, Journal of Computational and Applied Mathematics, 234, 7, 2010. Crossref

  17. NGUYEN VINH PHU, STROEVEN MARTIJN, SLUYS LAMBERTUS JOHANNES, MULTISCALE CONTINUOUS AND DISCONTINUOUS MODELING OF HETEROGENEOUS MATERIALS: A REVIEW ON RECENT DEVELOPMENTS, Journal of Multiscale Modelling, 03, 04, 2011. Crossref

  18. Ostoja-Starzewski Martin, Material spatial randomness: From statistical to representative volume element, Probabilistic Engineering Mechanics, 21, 2, 2006. Crossref

  19. Jänicke Ralf, Steeb Holger, Minimal loading conditions for higher-order numerical homogenisation schemes, Archive of Applied Mechanics, 82, 8, 2012. Crossref

  20. Fish Jacob, Kuznetsov Sergey, From Homogenization to Generalized Continua, International Journal for Computational Methods in Engineering Science and Mechanics, 13, 2, 2012. Crossref

  21. Askes Harm, Çalık-Karaköse Ülkü H., Susmel Luca, Gradient Elasticity Length Scale Validation Using Static Fracture Experiments of Pmma and PVC, International Journal of Fracture, 176, 2, 2012. Crossref

  22. Dontsov Egor V., Tokmashev Roman D., Guzina Bojan B., A physical perspective of the length scales in gradient elasticity through the prism of wave dispersion, International Journal of Solids and Structures, 50, 22-23, 2013. Crossref

  23. Skarzyski L., Tejchman J., Determination of representative volume element in concrete under tensile deformation, Computers & concrete, 9, 1, 2012. Crossref

  24. Nguyen V.-D., Noels L., Computational homogenization of cellular materials, International Journal of Solids and Structures, 51, 11-12, 2014. Crossref

  25. Jänicke R., Quintal B., Steeb H., Numerical homogenization of mesoscopic loss in poroelastic media, European Journal of Mechanics - A/Solids, 49, 2015. Crossref

  26. Skarżyński Ł., Tejchman J., Modelling the effect of material composition on the tensile properties of concrete, in Understanding the Tensile Properties of Concrete, 2013. Crossref

  27. LESIČAR TOMISLAV, TONKOVIĆ ZDENKO, SORIĆ JURICA, C1 CONTINUITY FINITE ELEMENT FORMULATION IN SECOND-ORDER COMPUTATIONAL HOMOGENIZATION SCHEME, Journal of Multiscale Modelling, 04, 04, 2012. Crossref

  28. Oleksy Marta, Cecot Witold, Application of hp-Adaptive Finite Element Method to Two-Scale Computation, Archives of Computational Methods in Engineering, 22, 1, 2015. Crossref

  29. Addessi Daniela, De Bellis Maria Laura, Sacco Elio, A micromechanical approach for the Cosserat modeling of composites, Meccanica, 51, 3, 2016. Crossref

  30. Lesičar Tomislav, Sorić Jurica, Tonković Zdenko, Large strain, two-scale computational approach using C1 continuity finite element employing a second gradient theory, Computer Methods in Applied Mechanics and Engineering, 298, 2016. Crossref

  31. Matouš Karel, Geers Marc G.D., Kouznetsova Varvara G., Gillman Andrew, A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials, Journal of Computational Physics, 330, 2017. Crossref

  32. Rezakhani Roozbeh, Cusatis Gianluca, Asymptotic expansion homogenization of discrete fine-scale models with rotational degrees of freedom for the simulation of quasi-brittle materials, Journal of the Mechanics and Physics of Solids, 88, 2016. Crossref

  33. Gawad Jerzy, van Bael Albert, van Houtte Paul, Multiscale Modelling of Mechanical Anisotropy, in Multiscale Modelling in Sheet Metal Forming, 2016. Crossref

  34. Berkache K., Deogekar S., Goda I., Picu R.C., Ganghoffer J.-F., Construction of second gradient continuum models for random fibrous networks and analysis of size effects, Composite Structures, 181, 2017. Crossref

  35. Geers Marc G. D., Kouznetsova Varvara G., Matouš Karel, Yvonnet Julien, Homogenization Methods and Multiscale Modeling: Nonlinear Problems, in Encyclopedia of Computational Mechanics Second Edition, 2017. Crossref

  36. Sorić Jurica, Lesičar Tomislav, Putar Filip, Tonković Zdenko, Modeling of Material Deformation Responses Using Gradient Elasticity Theory, in Multiscale Modeling of Heterogeneous Structures, 86, 2018. Crossref

  37. Teferra Kirubel, Graham-Brady Lori, A random field-based method to estimate convergence of apparent properties in computational homogenization, Computer Methods in Applied Mechanics and Engineering, 330, 2018. Crossref

  38. Geers Marc G. D., Kouznetsova Varvara G., Matouš Karel, Yvonnet Julien, Homogenization Methods and Multiscale Modeling: Nonlinear Problems, in Encyclopedia of Computational Mechanics Second Edition, 2017. Crossref

  39. Li Weixin, Rezakhani Roozbeh, Jin Congrui, Zhou Xinwei, Cusatis Gianluca, A multiscale framework for the simulation of the anisotropic mechanical behavior of shale, International Journal for Numerical and Analytical Methods in Geomechanics, 41, 14, 2017. Crossref

  40. Shakoor Modesar, Trejo Navas Victor Manuel, Pino Munõz Daniel, Bernacki Marc, Bouchard Pierre-Olivier, Computational Methods for Ductile Fracture Modeling at the Microscale, Archives of Computational Methods in Engineering, 26, 4, 2019. Crossref

  41. Storm J., Götze T., Hickmann R., Cherif C., Wießner S., Kaliske M., Homogenisation by cylindrical RVEs with twisted-periodic boundary conditions for hybrid-yarn reinforced elastomers, International Journal of Solids and Structures, 139-140, 2018. Crossref

  42. Sayyidmousavi Alireza, Daneshmand Farhang, Foroutan Mehrdad, Fawaz Zouheir, A new meshfree method for modeling strain gradient microbeams, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40, 8, 2018. Crossref

  43. Ongaro Federica, Estimation of the effective properties of two-dimensional cellular materials: a review, Theoretical and Applied Mechanics Letters, 8, 4, 2018. Crossref

  44. Rokoš O., Ameen M.M., Peerlings R.H.J., Geers M.G.D., Micromorphic computational homogenization for mechanical metamaterials with patterning fluctuation fields, Journal of the Mechanics and Physics of Solids, 123, 2019. Crossref

  45. Cater Christopher R., Xiao Xinran, Goldberg Robert K., Gong Xiaojing, Multiscale investigation of micro-scale stresses at composite laminate free edge, Composite Structures, 189, 2018. Crossref

  46. Lale Erol, Rezakhani Roozbeh, Alnaggar Mohammed, Cusatis Gianluca, Homogenization coarse graining (HCG) of the lattice discrete particle model (LDPM) for the analysis of reinforced concrete structures, Engineering Fracture Mechanics, 197, 2018. Crossref

  47. Lesičar Tomislav, Tonković Zdenko, Sorić Jurica, Second-Order Computational Homogenization Scheme Preserving Microlevel <i>C</i><sup>1</sup> Continuity, Key Engineering Materials, 627, 2014. Crossref

  48. Klimczak Marek, Cecot Witold, Modeling of heterogeneous elastic materials by the multiscale hp-adaptive finite element method, 1922, 2018. Crossref

  49. Askes Harm, De Domenico Dario, Xu Mingxiu, Gitman Inna M., Bennett Terry, Aifantis Elias C., Operator Splits and Multiscale Methods in Computational Dynamics, in Applied Wave Mathematics II, 6, 2019. Crossref

  50. Rezakhani Roozbeh, Alnaggar Mohammed, Cusatis Gianluca, Multiscale Homogenization Analysis of Alkali–Silica Reaction (ASR) Effect in Concrete, Engineering, 5, 6, 2019. Crossref

  51. Jänicke Ralf, Diebels Stefan, Requirements on Periodic Micromorphic Media, in Mechanics of Generalized Continua, 21, 2010. Crossref

  52. Berkache Kamel, Deogekar Sai, Goda Ibrahim, Picu R Catalin, Ganghoffer Jean-François, Homogenized elastic response of random fiber networks based on strain gradient continuum models, Mathematics and Mechanics of Solids, 24, 12, 2019. Crossref

  53. Biswas R., Shedbale A.S., Poh L.H., Nonlinear analyses with a micromorphic computational homogenization framework for composite materials, Computer Methods in Applied Mechanics and Engineering, 350, 2019. Crossref

  54. Tejchman Jacek, Bobiński Jerzy, Mesoscopic Modelling of Strain Localization in Plain Concrete, in Continuous and Discontinuous Modelling of Fracture in Concrete Using FEM, 2013. Crossref

  55. Geers M. G. D., Kouznetsova V. G., Brekelmans W. A. M., Computational homogenization, in Multiscale Modelling of Plasticity and Fracture by Means of Dislocation Mechanics, 522, 2010. Crossref

  56. Karami Behrouz, Janghorban Maziar, Tounsi Abdelouahed, On pre-stressed functionally graded anisotropic nanoshell in magnetic field, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41, 11, 2019. Crossref

  57. Xu Mingxiu, Gitman Inna M., Wei Peijun, Askes Harm, Finite element implementation of a multi-scale dynamic piezomagnetic continuum model, Computers & Structures, 240, 2020. Crossref

  58. Wangermez Maxence, Allix Olivier, Guidault Pierre-Alain, Ciobanu Oana, Rey Christian, Interface coupling method for the global–local analysis of heterogeneous models: A second-order homogenization-based strategy, Computer Methods in Applied Mechanics and Engineering, 365, 2020. Crossref

  59. Schneider Matti, Josien Marc, Otto Felix, Representative volume elements for matrix-inclusion composites - a computational study on the effects of an improper treatment of particles intersecting the boundary and the benefits of periodizing the ensemble, Journal of the Mechanics and Physics of Solids, 158, 2022. Crossref

  60. Yang Hua, Timofeev Dmitry, Giorgio Ivan, Müller Wolfgang H., Effective strain gradient continuum model of metamaterials and size effects analysis, Continuum Mechanics and Thermodynamics, 2020. Crossref

  61. Chen Jiaojiao, Cai Xin, Lale Erol, Yang Jie, Cusatis Gianluca, Centrifuge modeling testing and multiscale analysis of cemented sand and gravel (CSG) dams, Construction and Building Materials, 223, 2019. Crossref

  62. Raju Karthikayen, Tay Tong-Earn, Tan Vincent Beng Chye, A review of the FE2 method for composites, Multiscale and Multidisciplinary Modeling, Experiments and Design, 4, 1, 2021. Crossref

  63. Rodrigues Lopes Igor A., Andrade Pires Francisco M., Formulation and numerical implementation of a variationally consistent multi-scale model based on second-order computational homogenisation at finite strains for quasi-static problems, Computer Methods in Applied Mechanics and Engineering, 392, 2022. Crossref

  64. Rodrigues Lopes Igor A., Andrade Pires Francisco M., Unlocking the Potential of Second-order Computational Homogenisation: An Overview of Distinct Formulations and a Guide for their Implementation, Archives of Computational Methods in Engineering, 29, 3, 2022. Crossref

  65. Putar Filip, Sorić Jurica, Lesičar Tomislav, Tonković Zdenko, Damage modeling employing strain gradient continuum theory, International Journal of Solids and Structures, 120, 2017. Crossref

  66. Massart Thierry J., Kouznetsova Varvara, Peerlings Ron H. J., Geers Marc G. D., Computational Homogenization for Localization and Damage, in Advanced Computational Materials Modeling, 2010. Crossref

  67. Lesičar Tomislav, Tonković Zdenko, Sorić Jurica, Two-scale computational approach using strain gradient theory at microlevel, International Journal of Mechanical Sciences, 126, 2017. Crossref

  68. Rodrigues Lopes Igor A., Andrade Pires Francisco M., An assessment of multi-scale models based on second-order computational homogenisation, Computers & Structures, 259, 2022. Crossref

  69. Hütter Geralf, Sab Karam, Forest Samuel, Kinematics and constitutive relations in the stress-gradient theory: interpretation by homogenization, International Journal of Solids and Structures, 193-194, 2020. Crossref

  70. Rodrigues Lopes Igor A., Andrade Pires Francisco M., A fully second‐order homogenization formulation for the multi‐scale modeling of heterogeneous materials, International Journal for Numerical Methods in Engineering, 123, 21, 2022. Crossref

Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen Preise und Aborichtlinien Begell House Kontakt Language English 中文 Русский Português German French Spain