Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
International Journal for Multiscale Computational Engineering
Impact-faktor: 1.016 5-jähriger Impact-Faktor: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN Druckformat: 1543-1649
ISSN Online: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.2011002392
pages 131-142


Cornelia Kober
Hamburg University of Applied Sciences, Lohbruegger Kirchstr. 65, D-21033, Hamburg, Germany
Britt-Isabelle Berg
University Hospital Basel, Basel, Switzerland
Maike Sturmat
TU Braunschweig, Braunschweig, Germany
Joerg Rieger
University of Frankfurt, Frankfurt, Germany
Luigi Gallo
University of Zurich, Zurich, Switzerland
Markus Boel
Department of Mechanical Engineering, TU Braunschweig, Germany
Martin Mack
University of Frankfurt, Frankfurt, Germany
Hans-Florian Zeilhofer
TU Braunschweig, Braunschweig, Germany
Robert Sader
University of Frankfurt, Frankfurt, Germany


Because of muscular deformation and movement, standard radiology provides only a snapshot of a probably never recurring situation. The scope of this project is dynamic rendering of muscular structures, starting from 4D radiology, namely, 3D plus time, to macroscopic visualization and simulation based thereon. As full realtime 4D MRI is still beyond the technical possibilities for most human muscles, we follow kind of multilevel approach. The first step is the analysis of muscular tissue of cadaveric preparations where validation can be performed by direct comparison. Second, nearly static, but living muscular tissue is studied based on standard 3D MRI. The first step toward time dependency is an ex post composed series of static MRIs where the muscle goes back to relaxed position between the acquisition steps. This is followed by so-called “quasi-continuous” acquisition where, although not in real time, the muscle does not go back to its original state, but however remains in a stretched position during acquisition. The final goal is full real-time data acquisition. The radiological acquisition is followed by highly detailed image processing, segmentation, and visualization where the deforming muscular tissue is subjected to direct volume rendering with special transfer functions. The applied methods are demonstrated for the flexion of a human ankle joint and deforming human upper arm musculature. The visualization techniques proved to be well suited for capturing dynamics, but additional radiological research is strongly needed. The area of application of 4D modeling ranges from biomechanics to medical diagnosis and therapy of muscular disorders.


  1. Asakawa, D. S., Pappas, G. P., Blemker, S. S., Drace, J. E., and Delp, S. L., Cine phase-contrast magnetic resonance imaging as a tool for quantification of skeletal muscle motion. DOI: 10.1055/s-2004-815676

  2. Asakawa, D. S., Nayak, K. S., Blemker, S. S., Delp, S. L., Pauly, J. M., Nishimura, D.G., and Gold, G.E., Real-time imaging of skeletal muscle velocity. DOI: 10.1002/jmri.10422

  3. Blemker, S. S., Pinsky, P. M., and Delp, S. L., A 3D model of muscle reveals the causes of nonuniform strains in the biceps brachii. DOI: 10.1016/j.jbiomech.2004.04.009

  4. Blemker, S. S. and Delp, S. L., Three-dimensional representation of complex muscle architectures and geometries. DOI: 10.1007/s10439-005-7385-0

  5. Blemker, S. S. and Delp, S. L., Rectus femoris and vastus intermedius fiber excursions predicted by three-dimensional muscle models. DOI: 10.1016/j.jbiomech.2005.04.012

  6. Bi, X., Weale, P., Schmitt, P., Zuehlsdorff, S., and Jerecic, R., Non-contrast-enhanced four-dimensional (4D) intracranial MR angiography: A feasibility study. DOI: 10.1002/mrm.22220

  7. Biederer, J., Dinkel, J., Remmert, G., Jetter, S., Nill, S., Moser, T., Bendl, R., Thierfelder, C., Fabel, M., Oelfke, U., Bock, M., Plathow, C., Bolte, H., Welzel, T., Hoffmann, B., Hartmann, G., Schlegel, W., Debus, J., Heller, M., and Kauczor, H. U., 4D-imaging of the lung: Reproducibility of lesion size and displacement on helical CT, MRI, and cone beam CT in a ventilated ex vivo system. DOI: 10.1016/j.ijrobp.2008.09.014

  8. Drace, J. E. and Pelc, N. J., Tracking the motion of skeletal muscle with velocity-encoded MR imaging. DOI: 10.1002/jmri.1880040606

  9. Drace, J. E. and Pelc, N. J., Measurement of skeletal muscle motion in vivo with phase-contrast MR imaging. DOI: 10.1002/jmri.1880040211

  10. Chrizz, A., Gastrocnemius Muscle.

  11. Fung, L., Wong, B., Ravichandiran, K., Agur, A., Rindlisbacher, T., and Elmaraghy, A., Three-dimensional study of pectoralis major muscle and tendon architecture. DOI: 10.1002/ca.20784

  12. Gilles, B., Perrin, R., Magnenat-Thalmann, N., and Vallee, J., Bone motion analysis from dynamic MRI: Acquisition and tracking. DOI: 10.1007/978-3-540-30136-3_114

  13. Gilles, B., Moccozet, L., and Magnenat-Thalmann, N., Anatomical modelling of the musculoskeletal system from MRI. DOI: 10.1007/11866565_36

  14. Gilles, B. and Pai, D. K., Fast musculoskeletal registration based on shape matching. DOI: 10.1007/978-3-540-85990-1_99

  15. Gray, H., Anatomy of the Human Body. DOI: 10.5962/bhl.title.20311

  16. Harloff, A., Nussbaumer, A., Bauer, S., Stalder, A. F., Frydrychowicz, A., Weiller, C., Hennig, J., and Markl, M., In vivo assessment of walls hear stress in the atherosclerotic aorta using flow-sensitive 4D MRI. DOI: 10.1002/mrm.22383

  17. Jolivet, E., Daguet, E., Pomero, V., Bonneau, D., Laredo, J. D., and Skalli, W., Volumic patient-specific reconstruction of muscular system based on a reduced dataset of medical images. DOI: 10.1080/10255840801959479

  18. Kober, C., Erdmann, B., Lang, J., Sader, R., and Zeilhofer, H.-F., Adaptive finite element simulation of the human mandible using a new physiological model of the masticatory muscles. DOI: 10.1002/pamm.200410147

  19. Kober, C., Sader, R., and Zeilhofer, H.-F., Anisotropic reconstruction of the human masticatory muscles.

  20. Kober, C., Boerner, B.-I., Buitrago Tellez, C., Klarhoefer, M., Scheffle, K., Kunz, C., and Zeilhofer, H.-F., 4D-visualization of the orbit based on dynamic MRI with special focus on the extra-ocular muscles and the optic nerves. DOI: 10.1007/978-3-540-89208-3_159

  21. Kober, C., Boerner, B.-I., Mori, S., Buitrago Tellez, C., Klarhofer, M., Scheffle, K., Sader, R., and Zeilhofer, H.-F., Stereoscopic 4D-visualization of craniofacial soft tissue based on dynamic MRI and 256 row 4D-CT. DOI: 10.1007/978-3-540-68764-1_29

  22. Kober, C., Berg, B.-I., Berg, S., Leiggener, C., Zeilhofer, H.-F., and Sader, R., 4D-rendering of the human TMJ with focus on the articular disc based on dynamic MRI.

  23. Kober, C., Gallo, L., Zeilhofer, H.-F., and Sader, R., Computer-assisted analysis of human upper arm flxion by 4D-visualization based on MRI. DOI: 10.1007/s11548-011-0546-8

  24. Koolstra, J. H., van Eijden, T. M., van Spronsen, P. H., Weijs, W. A., and Valk, J., Computer-assisted estimation of lines of action of human masticatory muscles reconstructed in vivo by means of magnetic resonance imaging of parallel sections. DOI: 10.1016/0003-9969(90)90086-P

  25. Koolstra, J. H., van Eijden, T. M., and Weijs, W. A., An iterative procedure to estimate muscle lines of action in vivo. DOI: 10.1016/0021-9290(89)90075-4

  26. Larheim, T. A. and Westesson, P. L., Maxillofacial Imaging. DOI: 10.1016/S0221-0363(06)74138-5

  27. Markl, M., Wallis, W., Brendecke, S., Simon, J., Frydrychowicz, A., and Harloff, A., Estimation of global aortic pulse wave velocity by flow-sensitive 4D MRI. DOI: 10.1002/mrm.22353

  28. Nordez, A., Jolivet, E., Sudhoff, I., Bonneau, D., de Guise, J. A., and Skalli, W., Comparison of methods to assess quadriceps muscle volume using magnetic resonance imaging. DOI: 10.1002/jmri.21867

  29. Pappas, G. P., Asakawa, D. S., Delp, S. L., Zajac, F. E., and Drace, J. E., Nonuniform shortening in the biceps brachii during elbow flexion. DOI: 10.1152/japplphysiol.00843.2001

  30. Sano, T., Yamamoto, M., and Okano, T., Temporomandibular joint: MR imaging. DOI: 10.1016/S1052-5149(03)00033-9

  31. Sinha, S., Hodgson, J. A., Finni, T., Lai, A. M., Grinstead, J., and Edgerton, V. R., Muscle kinematics during isometric contraction: Development of phase contrast and spin tag techniques to study healthy and atrophied muscles. DOI: 10.1002/jmri.20210

  32. Song, T., Lee, V. S., Rusinek, H., Wong, S., and Laine, A. F., Four dimensional MR image analysis of dynamic renography. DOI: 10.1109/IEMBS.2006.260178

  33. Song, T., Lee, V. S., Rusinek, H., Wong, S., and Laine, A. F., Integrated four dimensional registration and segmentation of dynamic renal MR images. DOI: 10.1007/11866763_93

  34. Stalling, D., Westerhoff, M., and Hege, H. C., Amira: A highly interactive system for visual data analysis.

  35. Sudhoff, I., de Guise, J.A., Nordez, A., Jolivet, E., Bonneau, D., Khoury, V., and Skalli, W., 3D-patient-specific geometry of the muscles involved in knee motion from selected MRI images. DOI: 10.1007/s11517-009-0466-8

  36. Sturmat, M., FEM-simulation der kontraktion eines humanen musculus biceps brachii auf basis realer MRT-Daten.

  37. Sturmat, M., Kober, C., and Boel, M., Experimental and numerical investigations in skeletal muscle modeling. DOI: 10.1002/pamm.201010041

  38. Visage, Amira—Visualize, Analyze, Present.

  39. Widmalm, S. E., Brooks, S. L., Sano, T., Upton, L. G., and McKay, D. C., Limitation of the diagnostic value of MR images for diagnosing temporomandibular joint disorders. DOI: 10.1259/dmfr/23427399

  40. Zhong, X., Epstein, F. H., Spottiswoode, B. S., Helm, P. A., and Blemker, S. S., Imaging two-dimensional displacements and strains in skeletal muscle during joint motion by cine DENSE MR. DOI: 10.1016/j.jbiomech.2007.10.026

  41. Zhou, H. and Novotny, J. E., Cine phase contrast mri to measure continuum Lagrangian finite strain field in contracting skeletal muscle. DOI: 10.1002/jmri.20783