Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
International Journal for Multiscale Computational Engineering
Impact-faktor: 1.016 5-jähriger Impact-Faktor: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN Druckformat: 1543-1649
ISSN Online: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.v8.i3.50
pages 287-301

A Multiscale Finite Element Approach for Buckling Analysis of Elastoplastic Long Fiber Composites

Saeid Nezamabadi
Laboratoire de Mécanique et Génie Civil (LMGC), UMR 5508 CNRS
Hamid Zahrouni
Universite Paul Verlaine de Metz, Laboratoire de Physique et Mecanique des Materiaux, FRE CNRS 3236, Ile du Saulcy 57045, Metz Cedex 01 France
Julien Yvonnet
Universite Paris-Est, Laboratoire Modelisation et simulation Multi Echelle, 5 Bd Descartes, F-77454 Marne-la-Vallee Cedex 2, France
Michel Potier-Ferry
Universite Paul Verlaine de Metz, Laboratoire de Physique et Mecanique des Materiaux, FRE CNRS 3236, Ile du Saulcy 57045, Metz Cedex 01 France

ABSTRAKT

The present work is devoted to the microbuckling analysis of long fiber composites. A multiscale finite element method (FE2) is combined with the asymptotic numerical method (ANM) to study the elastoplastic instability which may occur in structures at both macroscopic and microscopic scales. The fiber is described by a linear material constitutive law, while the matrix phase is described by a nonlinear Ramberg-Osgood relationship. The stress field is then obtained via the total mechanical strain without any history dependence. Large strains are considered, which induce geometrical nonlinearities in both cases. The ANM framework allows obtaining complex response curves involving limit points in loading and displacement to be obtained. In the present path following procedure, adjustment of the step length is naturally automatic because the validity range of the asymptotic solution is a posteriori estimated depending on the local nonlinearity of the response branches. Numerical examples show the effectiveness of the proposed approach by investigating microscopic and macroscopic instabilities of long fiber composite structures in compression.


Articles with similar content:

Modeling of Mechanical Behavior of Geomaterials on the Mesoscale
International Journal for Multiscale Computational Engineering, Vol.3, 2005, issue 2
Igor Yu. Smolin, Pavel V. Makarov, Oleg I. Cherepanov, Yurii P. Stefanov
A Multiscale Framework for Analyzing Thermo-Viscoelastic Behavior of Fiber Metal Laminates
International Journal for Multiscale Computational Engineering, Vol.7, 2009, issue 4
Anastasia Muliana, Sourabh Sawant
MODELING OF MECHANICAL BEHAVIOR OF CROSS-REINFORCED METAL COMPOSITES UNDER THE CONDITIONS OF STEADY-STATE CREEP
Composites: Mechanics, Computations, Applications: An International Journal, Vol.2, 2011, issue 4
A. P. Yankovskii
Constructing Maximal Sets of Practical Weak Stability of Differential Inclusions
Journal of Automation and Information Sciences, Vol.37, 2005, issue 7
Fedor G. Garashchenko, Vladimir V. Pichkur
COMPUTATIONAL MODELING OF DAMAGE BASED ON MICROCRACK KINKING
International Journal for Multiscale Computational Engineering, Vol.13, 2015, issue 3
A. M. Dobrovat, Cristian Dascalu, S. Hall