Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
International Journal for Multiscale Computational Engineering
Impact-faktor: 1.016 5-jähriger Impact-Faktor: 1.194 SJR: 0.554 SNIP: 0.82 CiteScore™: 2

ISSN Druckformat: 1543-1649
ISSN Online: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.2020030934
pages 285-304


Yue Huang
Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Los Angeles, CA
Warren Nadvornick
Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Los Angeles, CA
Arian Ghazari
Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Los Angeles, CA
Nasr M. Ghoniem
Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Los Angeles, CA


In many engineering applications, such as fusion energy, hypersonic aircraft, and other space vehicles, structures are exposed to unprecedented levels of photon (heat) and energetic particle (plasma) energy flux on their surfaces. The shallow depth of interaction results in rapid heating and potential destruction of such structures if not designed carefully. We present a new design strategy that is twofold: multiphysics and multiscale. First, the structural component is modeled with the relevant physics utilizing appropriate coupling techniques, and in this case, we couple fluid flow with heat transfer in both fluids and solids, together with structural mechanics. The component is optimized for performance with such integrated multiphysics coupled models. Then, the optimized component is modeled only for its structural reliability using a top-down approach that begins from an elastic solution, followed by more detailed and coupled elastoplastic continuum model for the critical zone. The effects of the material microstructure can be revealed by correcting the material properties based on modeling at the microscale. A design example is shown here for a modular plasma-facing component in a fusion energy device (plasma divertor). The cooled unit has a micro-engineered tungsten foam protective tile on top of solid tungsten closed tubing with heat removal internals. Details of the tungsten foam are modeled to obtain effective thermomechanical properties that are then used in the multiscale modeling hierarchy.


  1. Abdel-Khalik, S., Crosatti, L., Sadowski, D., Shin, S., Weathers, J., Yoda, M., and Team, A., Thermal-Hydraulic Studies in Support of the ARIES-CS T-Tube Divertor Design, Fusion Sci. Technol., vol. 54, no. 3, pp. 864-877,2008.

  2. Calmidi, V. andMahajan,R., The Effective Thermal Conductivity of High Porosity Fibrous Metal Foams, J. Heat Transf, vol. 121, no. 2, pp. 466-471,1999.

  3. Gao, E., Nadvornick, W., Doerner, R., and Ghoniem, N.M., The Influence of Low-Energy Helium Plasma on Bubble Formation in Micro-Engineered Tungsten, J. Nuclear Mater., vol. 501, pp. 319-328,2018.

  4. Gao, E., Doerner, R., Williams, B., and Ghoniem, N.M., Low-Energy Helium Plasma Effects on Textured Micro-Porous Tungsten, J. Nuclear Mater, vol. 517, pp. 86-96,2019.

  5. Gibson,L.J. and Ashby, M.F., Cellular Solids: Structure and Properties, Cambridge, UK: Cambridge University Press, 1999.

  6. Hermsmeyer, S. andMalang, S., Gas-Cooled High Performance Divertor for a Power Plant, Fusion Eng. Des., vol. 61, pp. 197-202, 2002.

  7. Huang, Y., Cismondi, F., Diegele, E., Federici, G., Del Nevo, A., Moro, F., and Ghoniem, N., Thermo-Structural Design of the European Demo Water-Cooled Blanket with a Multiscale-Multiphysics Framework, Fusion Eng. Des., vol. 135, pp. 31-41, 2018.

  8. Ihli, T., Kruessmann, R., Ovchinnikov, I., Norajitra, P., Kuznetsov, V., and Giniyatulin, R., An Advanced He-Cooled Divertor Concept: Design, Cooling Technology, and Thermohydraulic Analyses with CFD, Fusion Eng. Des., vol. 75, pp. 371-375, 2005.

  9. Ihli, T., Raffray, A., Abdel-Khalik, S., and Shin, S., Design and Performance Study of the Helium-Cooled T-Tube Divertor Concept, Fusion Eng. Des, vol. 82, no. 3, pp. 249-264,2007.

  10. Ilic, M., Messemer, G., Zinn, K., Meyder, R., Kecskes, S., and Kiss, B., Experimental and Numerical Investigations of Heat Transfer in the First Wall of Helium-Cooled-Pebble-Bed Test Blanket Module, Part 2: Presentation of Results, Fusion Eng. Des., vol. 90, pp. 37-46,2015.

  11. Kessel, C., Blanchard, J., Davis, A., El-Guebaly, L., Garrison, L., Ghoniem, N., Humrickhouse, P., Huang, Y., Katoh, Y., Khodak, A., Marriott, E., Malang, S., Morley,N., Neilson, G., Rapp, J., Rensink, M., Rognlien, T., Rowcliffe, A., Smolentsev, S., Snead, L., Tillack, M., Titus, P., Waganer, L., Wallace, G., Wukitch, S., Ying, A., Young, K., and Zhai, Y., Overview of the Fusion Nuclear Science Facility, a Credible Break-in Step on the Path to Fusion Energy, Fusion Eng. Des, vol. 135, pp. 236-270, 2018.

  12. Koncar, B., Simonovski, I., and Draksler, M., Influence of Multiple Jet Cooling on the Heat Transfer and Thermal Stresses in Demo Divertor Cooling Finger, Fusion Eng. Des., vol. 86, nos. 2-3, pp. 167-173,2011.

  13. MatWeb, Material Property Data, from http://www.matweb.com, 2013.

  14. Norajitra, P., Abdel-Khalik, S.I., Giancarli, L.M., Ihli, T., Janeschitz, G., Malang, S., Mazul, I.V., and Sardain, P., Divertor Conceptual Designs for a Fusion Power Plant, Fusion Eng. Des, vol. 83, nos. 7-9, pp. 893-902,2008.

  15. Park, K. and Felippa, C.A., A Variational Principle for the Formulation of Partitioned Structural Systems, Int. J. Numer. Methods Eng., vol. 47, nos. 1-3, pp. 395-418,2000.

  16. Raffray, A., El-Guebaly, L., Malang, S., Wang, X., Bromberg, L., Ihli, T., Merrill, B., Waganer, L., and Team, A.C., Engineering Design and Analysis of the ARIES-CS Power Plant, Fusion Sci. Technol, vol. 54, no. 3, pp. 725-746,2008.

  17. Raffray, A.R., Malang, S., and Wang, X., Optimizing the Overall Configuration of a He-Cooled W-Alloy Divertor for a Power Plant, Fusion Eng. Des, vol. 84, nos. 7-11, pp. 1553-1557,2009.

  18. Rivera, D., Wirz, R.E., and Ghoniem, N.M., Experimental Measurements of Surface Damage and Residual Stresses in Micro-Engineered Plasma Facing Materials, J. Nuclear Mater., vol. 486, pp. 111-121,2017.

  19. Sakurai, S., Power and Particle Control in Jt-60sa to Support and Supplement ITER and DEMO, ISETS07: Int. Symp. onEcoTopia Science, Nagoya, Aichi, Japan, Nov. 23-25,2007.

  20. Smith, D., Daenner, W., and Gohar, Y., ITER Blanket, Shield and Material Database, ITER Documentation Series, Vienna, Austria: International Atomic Energy Agency, 1991.

  21. Terentyev, D., Xiao, X., Dubinko, A., Bakaeva, A., and Duan, H., Dislocation-Mediated Strain Hardening in Tungsten: Thermo-Mechanical Plasticity Theory and Experimental Validation, J. Mech. Phys. Solids, vol. 85, pp. 1-15,2015.

  22. Tillack, M., Raffray, A., Wang, X., Malang, S., Abdel-Khalik, S., Yoda, M., and Youchison, D., Recent US Activities on Advanced He-Cooled W-Alloy Divertor Concepts for Fusion Power Plants, Fusion Eng. Des., vol. 86, no. 1, pp. 71-98,2011.

  23. Wang, X., Malang, S., Tillack, M., and Team, A., High Performance Divertor Target Plate for a Power Plant: A Combination of Plate and Finger Concepts, Fusion Sci. Technol, vol. 60, no. 1, pp. 218-222,2011.

  24. Whelan, B.P. and Robinson, A.J., Nozzle Geometry Effects in Liquid Jet Array Impingement, Appl. Thermal Eng., vol. 29, nos. 11-12, pp. 2211-2221,2009.

  25. You, J., Mazzone, G., Visca, E., Bachmann, C., Autissier, E., Barrett, T., Cocilovo, V., Crescenzi, F., Domalapally, P., and Dongiovanni, D., Conceptual Design Studies for the European DEMO Divertor: Rationale and First Results, Fusion Eng. Des., vol. 109, pp. 1598-1603,2016.

  26. Zinkle, S. and Ghoniem, N., Operating Temperature Windows for Fusion Reactor Structural Materials, Fusion Eng. Des., vol. 51, pp. 55-71,2000.

Articles with similar content:

Nanoscience and Technology: An International Journal, Vol.7, 2016, issue 2
Peter V. Trusov, Nikita S. Kondratev
Multiscale Model for Temperature Distribution in Hydrating Concretee
International Journal for Multiscale Computational Engineering, Vol.7, 2009, issue 2
Vít Smilauer, T. Krejci
Multiscale Simulation Methods in Damage Prediction of Brittle and Ductile Materials
International Journal for Multiscale Computational Engineering, Vol.8, 2010, issue 1
Carsten Konke, Stefan Hafner, Torsten Luther, Jorg Unger, Stefan Eckardt
A Multiscale Approach to Nonlinearity in Piezoelectric-Ferroelectric Smart Structures: From Micromechanics to Engineering
International Journal for Multiscale Computational Engineering, Vol.6, 2008, issue 5
Oded Rabinovitch, Uri Kushnir
Progress in Plasma Processing of Materials, 1997, Vol.1, 1997, issue
Josee Dionne, Maher I. Boulos, Francois Gitzhofer, Joel Voyer