Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
International Journal for Multiscale Computational Engineering
Impact-faktor: 1.016 5-jähriger Impact-Faktor: 1.194 SJR: 0.554 SNIP: 0.82 CiteScore™: 2

ISSN Druckformat: 1543-1649
ISSN Online: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.v8.i5.30
pages 463-472

Atomistic Understanding of the Particle Clustering and Particle Size Effect on the Room Temperature Strength of SiC-Si3N4 Nanocomposites

Vikas Tomar
University of Notre Dame
Vikas Samvedi
School of Aeronautics and Astronautics, Purdue University, West Lafayette-IN
Han Sung Kim
Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana, 46556, USA


Experimentally obtained silicon carbide (SiC)-silicon nitride (Si3N 4) nanocomposites have SiC particles with circular cross section placed in a Si3N4 matrix, either along grain boundaries (GBs) or in intergranular positions. It has been observed that by a controlled manipulation of the SiC particle clustering and sizes, mechanical strength of such nanocomposites could be tailored. In the present investigation, 3D molecular dynamics (MD) analyses of SiC-Si3N4 nanocomposite deformation are performed in order to understand the related underlying mechanisms. Analyses reveal that the second-phase particles act as significant stress raisers in the case of a single-crystalline Si3N4 phase matrix reducing the mechanical strength by a factor of 1.8 with higher particle size causing larger reduction in peak strength. However, the particle's presence does not have any effect on the mechanical strength of a bicrystalline Si3N4 phase matrix. The deformation mechanism consists of considerable ductile shearing at the SiC-S3N4 interfaces in all microstructures. The presence of an initial crack has very little effect on the overall mechanical strength, indicating the presence of flaw tolerance at the length scale of the analyses. An examination of the effect of particle clustering together in a Si3N4 phase matrix showed that particle clusters with larger particle size result in higher reduction in mechanical strength. Overall, MD analyses confirm that the strengthening of the nanocomposite owing to SiC second-phase particles is a strong function of particle size, particle placement along GBs, and particle clustering.


  1. Abraham, F. F., How fast can cracks move? A research adventure in materials failure using millions of atoms and big computers. DOI: 10.1080/00018730310001594198

  2. Ajayan, P. M., Schadler, L. S., and Braun, P. V., Nanocomposite Science and Technology. DOI: 10.1002/3527602127

  3. Ching, W.-Y., Xu, Y.-N., Gale, J. D., and Ruehle, M., Ab-initio total energy calculation of α- and β-silicon nitride and the derivation of effective pair potentials with application to lattice dynamics.

  4. Choi, H.-J., Cho, K.-S., and Lee, J.-G., R-curve behavior of silicon-nitride-titanium nitride composites. DOI: 10.1111/j.1151-2916.1997.tb03172.x

  5. Dionald, W. A. R. D., Curtin, W. A., and Yue, Q., Mechanical behavior of aluminum-silicon nanocomposites: A molecular dynamics study. DOI: 10.1016/j.actamat.2006.05.022

  6. Farkas, D., Willemann, M., and Hyde, B., Atomistic Mechanisms of Fatigue in Nanocrystalline Metals. DOI: 10.1103/PhysRevLett.94.165502

  7. Huang, H., Ghoniem, N. M., Wong, J. K., and Baskes, M. I., Molecular dynamics determination of defect energetics in b- SiC using three representative empirical potentials. DOI: 10.1088/0965-0393/3/5/003

  8. Kadau, K., Germann, T. C., Lomdahl, P. S., and Holian, B. L., Microscopic view of structural phase transitions induced by shock waves. DOI: 10.1126/science.1070375

  9. Kroll, P. M., Computer Simulations and X-Ray Absorption Near Edge Structure of Silicon Nitride and Silicon Carbonitride.

  10. Liao, X. Z., Zhou, F., Lavernia, E. J., He, D.W., and Zhua, Y. T., Deformation twins in nanocrystalline Al. DOI: 10.1063/1.1633975

  11. Liao, X. Z., Zhou, F., Lavernia, E. J., Srinivasan, S. G., Baskes, M. I., He, D. W., and Zhu, Y. T., Deformation mechanism in nanocrystalline Al: Partial dislocation slip. DOI: 10.1063/1.1594836

  12. Lidorikis, E., Bachlechner, M. E., Kalia, R. K., Nakano, A., Vashishta, P., and Voyiadjis, G. Z., Coupling length scales for multiscale atomistic-continuum simulations: Atomistically induced stress distributions in Si/Si3N4 nanopixels. DOI: 10.1103/PhysRevLett.87.086104

  13. Matsunaga, K., Fisher, C., and Matsubara, H., Tersoff potential parameters for simulating cubic boron carbonitrides. DOI: 10.1143/JJAP.39.L48

  14. Melchionna, S., Ciccotti, G., and Holian, B. L., Hoover NPT dynamics for systems varying in shape and size. DOI: 10.1080/00268979300100371

  15. Mirgorodsky, A. P., Baraton, M. I., and Quintard, P., Lattice dynamics and prediction of pressure-induced incommensurate instability of a b-Si3N4 lattice with a simple mechanical model. DOI: 10.1103/PhysRevB.48.13326

  16. Morkoc, H., Strite, S., Gao, G. B., Lin, M. E., Sverdlov, B., and Burns, M., Large-band-gap SIC, Ill-V nitride, and IIVI ZnSe-based semiconductor device technologies. DOI: 10.1063/1.358463

  17. Mota, F. D. B., Justo, J. F., and Fazzio, A., Hydrogen role on the properties of amorphous silicon nitride. DOI: 10.1063/1.370977

  18. Niihara, K., New design concept for structural ceramics–Ceramic nanocomposites.

  19. Noreyan, A., Amar, J. G., and Marinescu, I., Molecualr dynamics simulations of nanoindentation of b-SiC with diamond indentor. DOI: 10.1016/j.mseb.2004.11.016

  20. Ohji, T., Jeong, Y.-K., Choa, Y.-H., and Niihara, K., Strengthening and toughnening mechanisms of ceramic nanocomposites. DOI: 10.1111/j.1151-2916.1998.tb02503.x

  21. Rendtel, A., Hubner, H., Herrman, M., and Schubert, C., Silicon nitride/silicon carbide nanocomposite materials: II, hot strength, creep, and oxidation resistance. DOI: 10.1111/j.1151-2916.1998.tb02457.x

  22. Schiotz, J., Di Tolla, F. D., and Jacobsen, K. W., Softening of nanocrystalline metals at very small grain sizes. DOI: 10.1038/35328

  23. Schiotz, J., Vegge, T., Di Tolla, F. D., and Jacobsen, K. W., Atomic-scale simulations of the mechanical deformation of nanocrystalline metals. DOI: 10.1103/PhysRevB.60.11971

  24. Smith,W., Yong, C.W., and Rodger, P. M., DL POLY: Application to molecular simulation. DOI: 10.1080/08927020290018769

  25. Song, M. and Chen, L., Molecular dynamics simulation of the fracture in polymer-exfoliated layered silicate nanocomposites. DOI: 10.1002/mats.200500041

  26. Spearot, D. E., Jacob, K. I., and McDowell, D. L., Nucleation of dislocations from [001] bicrystal interfaces in aluminum. DOI: 10.1016/j.actamat.2005.04.012

  27. Tersoff, J., Empirical interatomic potential for silicon with mproved elastic properties. DOI: 10.1103/PhysRevB.38.9902

  28. Tersoff, J., Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. DOI: 10.1103/PhysRevB.39.5566

  29. Tersoff, J., Carbon defects and defect reactions in silicon. DOI: 10.1103/PhysRevLett.64.1757

  30. Tomar, V., Atomistic Modeling of the Al+Fe2O3 Material System Using Classical Molecular Dynamics.

  31. Tomar, V., Analyses of the role of grain boundaries in mesoscale dynamic fracture resistance of SiC-Si3N4 intergranular nanocomposites. DOI: 10.1016/j.engfracmech.2008.04.020

  32. Tomar, V., Analyses of the role of the second phase SiC particles in microstructure dependent fracture resistance variation of SiC-Si3N4 nanocomposites. DOI: 10.1088/0965-0393/16/3/035001

  33. Tomar, V. and Zhou, M., Tension-compression strength asymmetry of nanocrystalline α-Fe2O3+fcc-Al ceramic-metal composites. DOI: 10.1063/1.2210797

  34. Tomar, V. and Zhou, M., Analyses of tensile deformation of nanocrystalline α-Fe2O3+fcc-Al composites using classical molecular dynamics.

  35. Tsuruta, K., Totsuji, H., and Totsuji, C., Neck formation processes of nanocrystalline silicon carbide: A tight-binding molecular dynamics study. DOI: 10.1080/09500830110037841

  36. Tsuruta, K., Totsuji, H., and Totsuji, C., Parallel tight-binding molecular dynamics for high-temperature neck formation processes of nanocrystalline silicon carbide.

  37. Van Swygenhoven, H. and Caro, A., Plastic behavior of nanophase Ni: A molecular dynamics computer simulation. DOI: 10.1063/1.119785

  38. Weimer, A. W. and Bordia, R. K., Processing and properties of nanophase SiC/Si3N4 composites. DOI: 10.1016/S1359-8368(99)00039-6

  39. Wendel, J. A. and Goddard, W. A., The Hessian biased force field for silicon nitride ceramics: Predictions of thermodynamic and mechanical properties for a- and b-Si3N4. DOI: 10.1063/1.463859

  40. Yamakov, V., Wolf, D., Phillpot, S. R., and Gleiter, H., Deformation twinning in nanocrystalline al by moleculardynamics simulation. DOI: 10.1016/S1359-6454(02)00318-X

  41. Zeng, Q. H., Yu, A. B., and Lu, G. Q., Molecular dynamics simulations of organoclays and polymer nanocomposites. DOI: 10.1504/IJNT.2008.016918

  42. Zeng, Q. H., Yu, A. B., Lu, G. Q., and Standish, R. K., Molecular dynamics simulation of organic-inorganic nanocomposites: Layering behavior and interlayer structure of organoclays. DOI: 10.1021/cm0342952

  43. Zhou, M., A new look at the atomic level virial stress-On continuum-molecular system equivalence. DOI: 10.1098/rspa.2003.1127

Articles with similar content:

Atomistic Simulations - Based Understanding of the Mechanism behind the Role of Second-Phase SiC Particles in Fracture Resistance of SiC-Si3N4 Nanocomposites
International Journal for Multiscale Computational Engineering, Vol.7, 2009, issue 4
Vikas Samvedi, Vikas Tomar
Nanoscience and Technology: An International Journal, Vol.3, 2012, issue 4
A. A. Gnidenko, M. A. Kulik, V. G. Zavodinsky
International Heat Transfer Conference 16, Vol.8, 2018, issue
Siyi Xiang, Wen Chen, Yanan Yue, Yuxin Fang
Composites: Mechanics, Computations, Applications: An International Journal, Vol.3, 2012, issue 4
Paolo Foraboschi
International Journal for Uncertainty Quantification, Vol.1, 2011, issue 4
Irene J. Beyerlein, X. Frank Xu, George Deodatis, Keqiang Hu