Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
International Journal for Multiscale Computational Engineering
Impact-faktor: 1.016 5-jähriger Impact-Faktor: 1.194 SJR: 0.554 SNIP: 0.82 CiteScore™: 2

ISSN Druckformat: 1543-1649
ISSN Online: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.v8.i2.40
pages 181-194

Molecular Dynamics Study of the Specimen Size and Imperfection Effects on the Failure Responses of Multi-Nanobar Structures

Luming Shen
School of Civil Engineering, University of Sydney
Zhen Chen
International Research Center for Computational Mechanics, State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Faculty of Vehicle Engineering and Mechanics, Dalian University of Technology, Dalian 116024, People's Republic of China; Department of Civil and Environmental Engineering, University of Missouri, Columbia, Missouri 65211, USA


Based on the recent analytical and numerical studies of the size effect on the structural failure response of bar members in parallel arrangement at the macroscopic level, molecular dynamics simulations are performed to investigate the effects of size, imperfection, and number of nanobars on the failure mechanism of nanoscale hierarchical structures with one-dimensional members arranged in parallel. It appears that at the nanoscale the possibility of being in the stable softening regime increases with the decrease of nanobar length, and the energy dissipation associated with the postlimit softening regime increases with the increase of the number of nanobars in the system, regardless of imperfection types. The results obtained at the nanoscale not only match well the analytical and numerical predictions at the macroscopic level, but also provide more insight into the effects of imperfections on the postlimit structural response.


  1. Ackbarow, T., Chen, X., Keten, S., and Buehler, M. J., Hierarchies, multiple energy barriers, and robustness govern the fracture mechanics of α-helical and β-sheet protein. DOI: 10.1073/pnas.0705759104

  2. Andia, P. C., Costanzo, F., and Gray, G. L., A classical mechanics approach to the determination of the stress-strain response of particle systems. DOI: 10.1088/0965-0393/14/4/015

  3. Autumn, K., Liang, Y. A., Hsieh, S. T., Zesch, W., Wai, P. C., Kenny, T. W., Fearing, R., and Full, R. J., Adhesive force of a single gecko foot-hair. DOI: 10.1038/35015073

  4. Bazant, Z. P., Can multiscale-multiphysics methods predict softening damage and structural failure?. DOI: 10.1615/IntJMultCompEng.v8.i1.50

  5. Bazant, Z. P. and Chen, E. P., Scaling of structural failure. DOI: 10.1115/1.3101672

  6. Chen, Z., Gan, Y., and Labuz, J. F., An analytical and numerical study of the size effect on the failure response of hierarchical structures. DOI: 10.1615/IntJMultCompEng.v6.i4.50

  7. Chen, Z., Shen, L., Gan, Y., and Fang, H. E., A hyper-surface for the combined loading rate and specimen size effects on the material properties. DOI: 10.1615/IntJMultCompEng.v3.i4.40

  8. Cheung, K. S. and Yip, S., Atomic-level stress in an inhomogeneous system. DOI: 10.1063/1.350186

  9. Clausius, R., On a mechanical theory applicable to heat.

  10. Currey, J. D., The Mechanical Adaptations of Bones.

  11. Daw, M. S. and Baskes, M. I., Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. DOI: 10.1103/PhysRevB.29.6443

  12. Fratzl, P., Gupta, H. S., Paschalis, E. P., and Roschger, P., Structure and mechanical quality of the collagen-mineral nano-composite in bone. DOI: 10.1039/b402005g

  13. Gao, H., Wang, X., Yao, H., Gorb, S., and Arzt, E., Mechanics of hierarchical adhesion structures of geckos. DOI: 10.1016/j.mechmat.2004.03.008

  14. Gu, Z., Ye, H., and Gracias, D. H., The bonding of nanowire assemblies using adhesive and solder.

  15. Horstemeyer, M. F., Baskes, M. L., and Plimpton, S. J., Length scale and time scale effects on the plastic flow of FCC metals. DOI: 10.1016/S1359-6454(01)00149-5

  16. Humphrey, W., Dalke, A., and Schulten, K., VMD-visual molecular dynamics. DOI: 10.1016/0263-7855(96)00018-5

  17. Irving, J. H. and Kirkwood, J. G., The statistical mechanical theory of the transport process, IV. The equations of hydrodynamics. DOI: 10.1063/1.1747782

  18. Johnson, R. A., Analytic nearest-neighbor model for fcc metals. DOI: 10.1103/PhysRevB.37.3924

  19. Johnson, R. A., Alloy models with the embedded-atom method. DOI: 10.1103/PhysRevB.39.12554

  20. Kamat, S., Su, X., Ballarini, R., and Heuer, A. H., Structural basis for the fracture toughness of the shell of the conch strombus gigas. DOI: 10.1038/35016535

  21. Li, C., Fang, G., Yuan, L., Liu, N., Ai, L., Xiang, Q., Zhao, D., Pan, C., and Zhao, X., Field emission from carbon nanotube bundle arrays grown on self-aligned ZnO nanorods. DOI: 10.1088/0957-4484/18/15/155702

  22. Li, Y. L., Kinloch, I. A., and Windle, A. H., Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. DOI: 10.1126/science.1094982

  23. Liang, H. Y., Liu, G. R., and Han, X., Atomistic simulation on the stiffening and softening mechanism of nanowires. DOI: 10.1007/978-1-4020-3953-9_99

  24. Liang, H., Upmanyu, M., and Huang, H., Size-dependent elasticity of nanowires: Nonlinear effects. DOI: 10.1103/PhysRevB.71.241403

  25. Liang, W. and Zhou, M., Size and strain rate in tensile deformation of Cu nanowires.

  26. Liu, B. and Qiu, X., How to compute atomic stress objectively. DOI: 10.1166/jctn.2009.1148

  27. Lovett, R. and Baus, M., A molecular theory of the Laplace relation and of the local forces in a curved interface. DOI: 10.1063/1.473384

  28. Majumder, M., Chopra, N., Andrews, R., and Hinds, B. J., Enhanced flow in carbon nanotubes. DOI: 10.1038/438044a

  29. Nakamura, A., Matsunaga, K., Tohma, J., Yamamoto, T., and Ikuhara, Y., Conducting nanowires in insulating ceramics. DOI: 10.1038/nmat920

  30. Rowlinson, J. S. and Widom, B., Molecular Theory of Capillarity.

  31. Shen, L. and Chen, Z., An investigation of the effect of interfacial atomic potential on the stress transition in thin films. DOI: 10.1088/0965-0393/12/4/S05

  32. Shen, L. and Chen, Z., A multi-scale simulation of tungsten film delamination from silicon substrate. DOI: 10.1016/j.ijsolstr.2005.02.021

  33. Shi, S., Sun, J., Zhang, G., Guo, J., and Wang, Z., The growth of thin silver nanowire bundles using RbAg<sub>4</sub>I<sub>5</sub> crystal grain thin film and the ionic conductivity of the thin film. DOI: 10.1016/j.physb.2005.02.022

  34. Subramaniyan, A. K. and Sun, C. T., Equivalence of virial stress to continuum Cauchy stress.

  35. Uplaznik, M., Bercic, B., Strle, J., Ploscaru, M. I., Dvorsek, D., Kusar, P., Devetak, M., Vengust, D., Podobnik, B., and Mihailovic, D. D., Conductivity of single Mo<sub>6</sub>S<sub>9-x</sub>I<sub>x</sub> molecular nanowire bundles. DOI: 10.1088/0957-4484/18/50/508001

  36. Verweij, H., Schillo, M. C., and Li, J., Fast mass transport through carbon nanotube membranes. DOI: 10.1002/smll.200700368

  37. Yao, H. and Gao, H., Mechanics of robust and releasable adhesion in biology: bottom-up designed hierarchical structures of gecko. DOI: 10.1016/j.jmps.2006.01.002

  38. Yao, H. and Gao, H., Multi-scale cohesive laws in hierarchical materials. DOI: 10.1016/j.ijsolstr.2007.06.007

  39. Zhang, S. L., Khare, R., Lu, Q., and Belytschko, T., A bridging domain and strain computation method for coupled atomistic-continuum modelling of solids. DOI: 10.1002/nme.1895

  40. Zhou, M., A new look at the atomic level virial stress: On continuum-molecular system equivalence. DOI: 10.1098/rspa.2003.1127

Articles with similar content:

Analytical and Numerical Study of the Size Effect on the Failure Response of Hierarchical Structures
International Journal for Multiscale Computational Engineering, Vol.6, 2008, issue 4
J. F. Labuz, Yong Gan, Zhen Chen
International Journal for Multiscale Computational Engineering, Vol.9, 2011, issue 5
Valerio Varano, Patrizia Trovalusci
Nanoscience and Technology: An International Journal, Vol.8, 2017, issue 2
Georgii V. Kozlov, I. V. Dolbin, Yulia N. Karnet
Can Multiscale-Multiphysics Methods Predict Softening Damage and Structural Failure?
International Journal for Multiscale Computational Engineering, Vol.8, 2010, issue 1
Zdenek P. Bazant
Analysis and Numerical Simulation of Discontinuous Displacements Modeling Fine Scale Damage in a Continuum Under Mixed-Mode Loading
International Journal for Multiscale Computational Engineering, Vol.2, 2004, issue 4
Krishna Garikipati