Abo Bibliothek: Guest
International Journal for Multiscale Computational Engineering

Erscheint 6 Ausgaben pro Jahr

ISSN Druckformat: 1543-1649

ISSN Online: 1940-4352

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.4 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 2.2 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00034 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.46 SJR: 0.333 SNIP: 0.606 CiteScore™:: 3.1 H-Index: 31

Indexed in

RANDOM WALK-BASED STOCHASTIC MODELING OF DIFFUSION IN SPHERICAL AND ELLIPSOIDAL COMPOSITES

Volumen 18, Ausgabe 4, 2020, pp. 493-505
DOI: 10.1615/IntJMultCompEng.2020033217
Get accessGet access

ABSTRAKT

Diffusion in randomly dispersed, spherical, and ellipsoidal composite systems is studied using the random walk simulations. The outcome of the computational analysis is validated by finite element analyses. A Monte Carlo scheme is applied to generate the particulate system. The composite is assumed to have a lower diffusivity in the inclusions and a higher diffusivity in the matrix. The effective diffusion coefficient is found to agree with the theory relating volume fractions of permeable and impermeable inclusions to the diffusion coefficient. The effect of the particle aspect ratio is investigated numerically and compared with the closed-form, effective medium solutions. In the case of ellipsoidal inclusions, it is found that the effective diffusion coefficient is strongly dependent on the particle aspect ratio and that it rapidly decreases with the volume fraction of inclusions. The interfacial effect in the setting of anomalous diffusion for permeable systems is also tentatively investigated.

REFERENZEN
  1. Anh, D.H.N., Blaudeck, P., Hoffmann, K.H., Prehl, J., and Tarafdar, S., Anomalous Diffusion on Random Fractal Composites, J. Phys. A: Math. Theor., vol. 40, p. 11453,2007.

  2. Belova, I.V. and Murch, G.E., The Effective Diffusivity in Polycrystalline Material in the Presence of Interphase Boundaries, Philos. Mag, vol. 84, pp. 17-28,2004.

  3. Bertin, E.M. and Bouchaud, J.P., Subdiffusion and Localization in the One-Dimensional Trap Model, Phys. Rev. E, vol. 67, p. 26128,2003.

  4. Chaudhuri, P., Gao, Y., Berthier, L., Kilfoil, M., and Kob, W., A Random Walk Description of the Heterogeneous Glassy Dynamics of Attracting Colloids, J. Phys.: Condens. Matter, vol. 20, p. 244126,2008.

  5. Cukier, R.I., Sheu, S.Y., and Tobochnik, J., Random-Walk Simulation of the Dielectric Constant of a Composite Material, Phys. Rev. B: Condens. Matter, vol. 42, pp. 5342-5344,1990.

  6. Duffy, K.J., Cummings, P.T., and Ford, R.M., Random Walk Calculations for Bacterial Migration in Porous Media, Biophys. J., vol. 68, pp. 800-806,1995.

  7. Dutta, T., Fractal Pore Structure of Sedimentary Rocks: Simulation by Ballistic Deposition, J. Geophys. Res., vol. 108(B2), p. 2062, 2003.

  8. Evans, W., Prasher, R., Fish, J., Meakin, P., Phelan, P., and Keblinski, P., Effect of Aggregation and Interfacial Thermal Resistance on Thermal Conductivity of Nanocomposites and Colloidal Nanofluids, Int. J. Heat Mass Transf, vol. 51, pp. 1431-1438,2008.

  9. Fang, Q. and Boas, D.A., Tetrahedral Mesh Generation from Volumetric Binary and Grayscale Images, Proc. 2009IEEE Int. Symp. on Biomedical Imaging: From Nano to Macro, pp. 1142-1145,2009.

  10. Gouyet, J.F., Rosso, M., and Sapoval, B., Fractal Structure of Diffusion and Invasion Fronts in Three-Dimensional Lattices through the Gradient Percolation Approach, Phys. Rev. B: Condens. Matter, vol. 37, pp. 1832-1838,1988.

  11. Guo, X., Yi, Y.B., and Kumosa, M.S., A Reduced Computational Model for Prediction of Electrical Resistance in Fibrous Composites, Int. J. Multiscale Comput. Eng., vol. 12, pp. 451-463,2014.

  12. Hashin, Z., Analysis of Composite-Materials - A Survey, J. Appl. Mech., vol. 50, pp. 481-505,1983.

  13. Hasselman, D.P.H. and Johnson, L.F., Effective Thermal Conductivity of Composites with Interfacial Thermal Barrier Resistance, J. Compos. Mater., vol. 21, pp. 508-515,1987.

  14. Hou, T. Y. and Wu, X.H., A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media, J. Comput. Phys, vol. 134, pp. 169-189,1997.

  15. Kalnin, J.R., Kotomin, E.A., and Maier, J., Calculations of the Effective Diffusion Coefficient for Inhomogeneous Media, J. Phys. Chem. Solids, vol. 63, pp. 449-456, 2002.

  16. Keffer, D.J., Edwards, B.J., and Adhangale, P., Determination of Statistically Reliable Transport Diffusivities from Molecular Dynamics Simulation, J. Non-Newtonian Fluid Mech., vol. 120, pp. 41-53,2004.

  17. Kerstein, A.R., Equivalence of the Void Percolation Problem for Overlapping Spheres and a Network Problem, J. Phys. A: Math. Gen, vol. 16, pp. 3071-3075,1983.

  18. Klemm, A., Kimmich, R., and Weber, M., Flow through Percolation Clusters: NMR Velocity Mapping and Numerical Simulation Study, Phys. Rev. E, vol. 63, no. 4 Part 1, p. 041514,2001.

  19. Knight, J.D., Lerner, M.G., Marcano-Velazquez, J.G., Pastor, R.W., and Falke, J.J., Single Molecule Diffusion of Membrane-Bound Proteins: Window into Lipid Contacts and Bilayer Dynamics, Biophys. J, vol. 99, pp. 2879-2887,2010.

  20. Lu, Y., A Combinatorial Approach for Automotive Friction Materials: Effects of Ingredients on Friction Performance, Compos. Sci. Technol., vol. 66, pp. 591-598,2006.

  21. Maxwell, J.C., A Treatise on Electricity and Magnetism, Oxford: Clarendon Press, 1873.

  22. McLlaughlin, R., A Study of the Differential Scheme for Composite-Materials, Int. J. Eng. Sci., vol. 15, pp. 237-244,1977.

  23. Miller, C.A., Kim, I.C., and Torquato, S., Trapping and Flow among Random Arrays of Oriented Spheroidal Inclusions, J. Chem. Phys, vol. 94, pp. 5592-5598,1991.

  24. Pietrak, K. andTomasz, S.W., A Review of Models for Effective Thermal Conductivity of Composite Materials, J. Power Technol, vol. 95, pp. 14-24,2015.

  25. Qiu, J., Yi, Y.B., and Guo, X., Computational Prediction of Electrical and Thermal Conductivities of Disklike Particulate Composites, Int. J. Comput. Mater. Sci. Surf. Eng., vol. 4, p. 1550013,2015.

  26. Ribeiro, H.V., Tateishi, A.A., Alves, L.G.A., Zola, R.S., and Lenzi, E.K., Investigating the Interplay between Mechanisms of Anomalous Diffusion via Fractional Brownian Walks on a Comb-Like Structure, New J. Phys, vol. 16, p. 093050,2014.

  27. Rintoul, M.D., Precise Determination of the Void Percolation Threshold for Two Distributions of Overlapping Spheres, Phys. Rev. E, vol. 62, pp. 68-72,2000.

  28. Sancho, J.M., Lacasta, A.M., Lindenberg, K., Sokolov, I.M., and Romero, A.H., Diffusion on a Solid Surface: Anomalous Is Normal, Phys. Rev. Lett., vol. 92, p. 250601,2004.

  29. Swartz, E.T. and Pohl, R.O., Thermal Boundary Resistance, Rev. of Mod. Phys, vol. 61, pp. 605-668,1989.

  30. Sykova, E. and Nicholson, C., Diffusion in Brain Extracellular Space, Physiol. Rrev., vol. 88, pp. 1277-1240,2008.

  31. Tawerghi, E. and Yi, Y.B., A Computational Study on the Effective Properties of Heterogeneous Random Media Containing Particulate Inclusions, J. Phys. D: Appl. Phys., vol. 42,2009.

  32. Tera, G., Ramstad, T., and Hansen, A., Anomalous Diffusion on Clusters in Steady-State Two-Phase Flow in Porous Media in Two Dimensions, Europhys. Lett., vol. 89, p. 59901,2010.

  33. Torquato, S., Random Heterogeneous Materials, New York: Springer-Verlag, Inc., 2002.

  34. Torquato, S., Kim, I.C., and Cule, D., Effective Conductivity, Dielectric Constant, and Diffusion Coefficient of Digitized Composite Media via First-Passage-Time Equations, J. Appl. Phys, vol. 85, pp. 1560-1571,1999.

  35. Trinh, S., Arce, P., and Locke, B.R., Effective Diffusivities of Point-Like Molecules in Isotropic Porous Media by Monte Carlo Simulation, Transp. Porous Media, vol. 38, pp. 241-259,2000.

  36. Zhang, Y. and Liu, L., On Diffusion in Heterogeneous Media, Am. J. Sci, vol. 312, pp. 1028-1047,2012.

Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen Preise und Aborichtlinien Begell House Kontakt Language English 中文 Русский Português German French Spain