Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Computational Thermal Sciences: An International Journal
ESCI SJR: 0.249 SNIP: 0.434 CiteScore™: 1.4

ISSN Druckformat: 1940-2503
ISSN Online: 1940-2554

Computational Thermal Sciences: An International Journal

DOI: 10.1615/ComputThermalScien.2020027016
pages 55-77

THERMOPHORESIS AND BROWNIAN MOTION EFFECTS ON MHD MICROPOLAR NANOFLUID FLOW PAST A STRETCHING SURFACE WITH NON-UNIFORM HEAT SOURCE/SINK

Kempannagari Anantha Kumar
Department of Sciences and Humanities, Sri Venkateswara Engineering College, Karakambadi Road-517507, Tirupati, Andhra Pradesh, India; Department of Mathematics, Sri Venkateswara University, Tirupati-517502, India
Vangala Sugunamma
Department of Mathematics, Sri Venkateswara University, Tirupati-517502, A.P., India
Naramgari Sandeep
Department of Mathematics, Central University of Karnataka, Kalaburagi-585367, India

ABSTRAKT

This report presents the combined influence of heat and mass transfer on magnetohydrodynamic stagnation point flow of micropolar nanoliquid over a stretching surface. The fluid flow is assumed to be steady and laminar. The impacts of thermal radiation, first order velocity slip, non-uniform heat source/sink, and chemical reaction are considered. The nanofluid model is considered in this work in view of the response of Brownian motion and thermophoresis. Appropriate similarity transformations are used to transform the governing partial differential equations to dimensionless ordinary differential equations (ODEs), which are highly nonlinear and coupled. A fourth order Runge-Kutta-based shooting method is utilized to solve the nonlinear coupled ODEs. Impacts of various physical parameters on the fields of velocity, micro-rotation, and temperature are denoted through graphs. Computations for friction factor, couple stress, local Nusselt number, and Sherwood number are carried out. Results indicate that an increase in the magnitude of Brownian motion and thermophoresis parameters amplifies the thermal field, whereas the fluid concentration becomes reduced with a boost in Brownian motion parameter.

REFERENZEN

  1. Abel, M.S. and Nandeppanavar, M.M., Heat Transfer in MHD Viscoelastic Boundary Layer Flow over a Stretching Sheet with Non-Uniform Heat Source/Sink, Commun. Nonlin. Sci. Numer. Simul., vol. 14, pp. 2120-2131,2009.

  2. Animasaun, I.L., Koriko, O.K., Adegbie, K.S., Babatunde, H.S., Ibraheem, R.O., Sandeep, N., and Mahanthesh, B., Comparative Analysis between 36 nm and 47 nm Alumina-Water Nanofluid Flows in the Presence of Hall Effect, J. Therm. Anal. Calorim., vol. 135, pp. 1-14,2018.

  3. Ashmawy, E.A., Fully Developed Natural Convective Micropolar Fluid Flow in a Vertical Channel with Slip, J. Egypt. Math. Soc., vol. 23, pp. 563-567,2015.

  4. Bachok, N., Ishak, A., and Pop, I., Stagnation Point Flow over a Stretching/Shrinking Sheet in a Nanofluid, Nanoscale Res. Lett., vol. 6, no. 1,pp. 1-10,2011.

  5. Choi, S.U.S. and Eastman, J.A., Enhancing Thermal Conductivity of Fluids with Nanoparticles, ASME-Pub-Fed., vol. 231, pp. 99-106,1995.

  6. Eringen, A.C., Theory of Anisotropic Micropolar Fluids, Int. J. Eng. Sci, vol. 18, no. 1, pp. 5-17,1980.

  7. Hayat, T. and Qasim, M., Influence of Thermal Radiation and Joule Heating on MHD Flow of a Maxwell Fluid in the Presence of Thermophoresis, Int. J. Heat Mass Transf., vol. 53, pp. 4780-4788,2010.

  8. Hayat, T., Ali, S., Awais, M., and Alsaedi, A., Joule Heating Effects in MHD Flow of Burger's Fluid, Heat Transf. Res., vol. 47, no. 12, pp. 1083-1092,2016.

  9. Hiemenz, K., Die Grenzschicht an Einem in den Gleichformingen Flussigkeitsstrom Eingetauchten Garden Kreiszylinder, Dingl Polytech. J, vol. 326, pp. 321-324,1911.

  10. Jang, S.P. and Choi, S.U.S., Role of Brownian Motion in the Enhanced Thermal Conductivity of nanofluids, Appl. Phys. Lett., vol. 84, pp. 4316-4318,2004.

  11. Khan, M.W.A., Waqas, M., Khan, M.I., Alsaedi, A., and Hayat, T., MHD Stagnation Point Flow Accounting Variable Thickness and Slip Effects, ColloidPolym. Sci., vol. 295, pp. 1201-1209,2017.

  12. Khedr, M.E.M., Chamkha, A.J., andBayomi, M., MHD Flow of a Micropolar Fluid past a Stretched Permeable Surface with Heat Generation or Absorption, Nonlin. Anal. Model. Cont., vol. 14, no. 1, pp. 27-40,2017.

  13. Koriko, O.K., Animasaun, I.L., Mahanthesh, B., Saleem, S., Sarojamma, G., and Sivaraj, R., Heat Transfer in the Flow of Blood- Gold Carreau Nanofluid Induced by Partial Slip and Buoyancy, Heat Transf. Asian Res, vol. 47, no. 6, pp. 806-823,2018.

  14. Kumar, K.A., Reddy, J.V.R., Sandeep, N., and Sugunamma, V., Influence of Thermal Radiation on Stagnation Flow towards a Stretching Sheet with Induced Magnetic Field, Adv. Phys. Theo. Appl., vol. 53, pp. 23-28,2016.

  15. Kumar, K.A., Reddy, J.V.R., Sugunamma, V., and Sandeep, N., Impact of Frictional Heating on MHD Radiative Ferrofluid past a Convective Shrinking Surface, Def. Diff. Forum, vol. 378, pp. 157-174,2017.

  16. Kumar, K.A., Reddy, J.V.R., Sugunamma, V., and Sandeep, N., Simultaneous Solutions for MHD Flow of Williamson Fluid over a Curved Sheet with Non-Uniform Heat Source/Sink, Heat Transf. Res., 2018a. DOI: 10.1615/HeatTransRes.2018025939.

  17. Kumar, K.A., Reddy, J.V.R., Sugunamma, V., and Sandeep, N., Magnetohydrodynamic Cattaneo-Christov Flow past a Cone and a Wedge with Variable Heat Source/Sink, Alex. Eng. J, vol. 57, no. 1, pp. 435-443,2018b.

  18. Kumar, K.A., Sugunamma, V., and Sandeep, N., Numerical Exploration of MHD Radiative Micropolar Liquid Flow Driven by Stretching Sheet with Primary Slip: A Comparative Study, J. Non-Equilib. Thermodyn, 2018c. DOI: 10.1515/jnet-2018-0069.

  19. Kumar, K.A., Reddy, J.V.R., Sugunamma, V., and Sandeep, N., Impact of Cross Diffusion on MHD Viscoelastic Fluid Flow past a Melting Surface with Exponential Heat Source, Multi. Mode. Mat. Str., vol. 14, no. 5, pp. 999-1016,2018d.

  20. Kumar, K.A., Sugunamma, V., and Sandeep, N., Impact of Non-Linear Radiation on MHD Non-Aligned Stagnation Point Flow of Micropolar Fluid over a Convective Surface, J. Non-Equilib. Thermodyn, vol. 43, no. 4, pp. 327-345,2018e.

  21. Kumar, K.A., Reddy, J.V.R., Sugunamma, V., and Sandeep, N., MHD Flow of Chemically Reacting Williamson Fluid over a Curved/Flat Surface with Variable Heat Source/Sink, Int. J. Fluid Mech. Res, 2019. DOI: 10.1615/InterJFluid- MechRes.2018025940.

  22. Lakshmi, K.B., Kumar, K.A., Reddy, J.V.R., and Sugunamma, V., Influence of Nonlinear Radiation and Cross Diffusion on MHD Flow of Casson and Walters-B Nanofluids past a Variable Thickness Sheet, J. Nanofluids, vol. 8, pp. 73-83,2019.

  23. Mahanthesh, B., Gireesha, B.J., and Animasaun, I.L., Exploration of Non-Linear Thermal Radiation and Suspended Nanoparticles Effects on Mixed Convection Boundary Layer Flow of Nanoliquids on a Melting Vertical Surface, J. Nanofluids, vol. 7, pp. 833-843,2018.

  24. Makinde, O.D. and Animasaun, I.L., Thermophoresis and Brownian Motion Effects on MHD Bioconvection of Nanofluid with Nonlinear Thermal Radiation and Quartic Chemical Reaction past an Upper Horizontal Surface of a Paraboloid of Revolution, J Mol. Liq., vol. 221, pp. 733-743,2016.

  25. Naveed, M., Abbas, Z., and Sajid, M., MHD Flow of Micropolar Fluid due to a Curved Stretching Sheet with Thermal Radiation, J. Appl. Fluid Mech, vol. 9,no.1,pp. 131-138,2016.

  26. Navier, C.L.M., Sur les lois du Mouvement des Fluides, Mem. Acad. Royal Sci. Inst. Fr., vol. 6, pp. 389-440,1827.

  27. Ramadevi, B., Sugunamma, V., Kumar, K.A., and Reddy, J.V.R., MHD Flow of Carreau Fluid over a Variable Thickness Melting Surface Subject to Cattaneo-Christov Heat Flux, Multi. Model. Mater. Struct., vol. 15, no. 1, 2019.

  28. Reddy, J.V.R., Sugunamma, V., Sandeep, N., and Kumar, K.A., Influence of Non-Uniform Heat Source/Sink on MHD Nanofluid Flow past a Slendering Stretching Sheet with Slip Effects, Global J. Pure Appl. Math., vol. 12, pp. 247-254,2016.

  29. Reddy, J.V.R., Sugunamma, V., and Sandeep, N., Enhanced Heat Transfer in the Flow of Dissipative Non-Newtonian Casson Fluid Flow over a Convectively Heated Upper Surface of a Paraboloid of Revolution, J. Mol. Liq, vol. 229, pp. 380-388,2017.

  30. Reddy, J.V.R., Kumar, K.A., Sugunamma, V., and Sandeep, N., Effect of Cross Diffusion on MHD Non-Newtonian Fluids Flow past a Stretching Sheet with Non-Uniform Heat Source/Sink: A Comparative Study, Alex. Eng. J., vol. 57, no. 3, pp. 1829-1838, 2018.

  31. Sandeep, N. and Sulochana, C., Dual Solutions for Unsteady Mixed Convective Flow of MHD Micropolar Fluid over a Stretch-ing/Shrinking Sheet with Non-Uniform Heat Source/Sink, Eng. Sci. Tech., Int. J., vol. 18, pp. 738-745,2015.

  32. Sandeep, N., Effect of Aligned Magnetic Field on Liquid Thin Film Flow of Magnetic-Nanofluids Embedded with Graphene Nanoparticles, Adv. Powder Tech., vol. 28, no. 3, pp. 865-875,2017.

  33. Sandeep, N. and Animasaun, I.L., Heat Transfer in Wall Jet Flow of Magnetic-Nanofluids with Variable Magnetic Field, Alex. Eng. J., vol. 56, pp. 263-269,2017.

  34. Sandeep, N. and Saleem, S., MHD Flow and Heat Transfer of a Dusty Nanofluid over a Stretching Surface in a Porous Medium, Jordan J. Civil Eng., vol. 11, pp. 149-164,2017.

  35. Sharma, R., Ishak, A., and Pop, I., Partial Slip Flow and Heat Transfer over a Stretching Sheet in a Nanofluid, Math. Prob. Eng., vol. 2013, Article ID: 724547, pp. 1-7, 2013.

  36. Shah, N.A., Animasaun, I.L., Ibtaheem, R.O., Babatunde, H.A., Sandeep, N., and Pop, I., Scrutinization of the Effects of Grashof Number on the Flow of Different Fluids Driven by Convection over Various Surfaces, J. Mol. Liq., vol. 249, pp. 980-990,2018.

  37. Sivaraj, R., Animasaun, I.L., Olabiyi, A., Saleem, S., and Sandeep, N., Gyrotactic Microorganisms and Thermoelectric Effects on the Dynamics of 29 nm CuO-Water Nanofluid over an Upper Horizontal Surface of Paraboloid of Revolution, Multi. Mode. Mat. Str., vol. 14, no. 4, pp. 695-721,2018.

  38. Sulochana, C., Kumar, G.P.A., and Sandeep, N., Effect of Thermophoresis and Brownian Moment on 2D MHD Nanofluid Flow over an Elongated Sheet, Def. Diff. Forum, vol. 377, pp. 111-126,2017a.

  39. Sulochana, C., Samrat, S.P., and Sandeep, N., Boundary Layer Analysis of an Incessant Moving Needle in MHD Radiative Nanofluid with Joule Heating, Int. J. Mech. Sci., vols. 128-129, pp. 326-331,2017b.

  40. Yacob, N.A. and Ishak, A., Micropolar Fluid Flow over a Shrinking Sheet, Meccanica, vol. 47, pp. 293-299,2012.


Articles with similar content:

DOUBLE DIFFUSION MIXED CONVECTION IN AN AXISYMMETRIC STAGNATION FLOW OF A NANOFLUID OVER A VERTICAL CYLINDER
Computational Thermal Sciences: An International Journal, Vol.4, 2012, issue 3
M. Modather M. Abdou, A J Chamkha
A REVISED MODEL TO ANALYZE MHD FLOW OF MAXWELL NANOFLUID PAST A STRETCHING SHEET WITH NONLINEAR THERMAL RADIATION EFFECT
International Journal of Fluid Mechanics Research, Vol.46, 2019, issue 2
Cherlacola Srinivas Reddy, Besthapu Prabhakar, Shanker Bandari
MHD FLOW OF CHEMICALLY REACTING WILLIAMSON FLUID OVER A CURVED/FLAT SURFACE WITH VARIABLE HEAT SOURCE/SINK
International Journal of Fluid Mechanics Research, Vol.46, 2019, issue 5
J. V. Ramana Reddy, Vangala Sugunamma, Naramgari Sandeep, Kempannagari Anantha Kumar
HYDROMAGNETIC FLOW OF A NANOFLUID IN A POROUS CHANNEL WITH EXPANDING OR CONTRACTING WALLS
Journal of Porous Media, Vol.17, 2014, issue 11
A. Vijayalakshmi, T. R. Ramamohan, A. Subramanyam Reddy, Suripeddi Srinivas
NONSIMILAR SOLUTION OF UNSTEADY MIXED CONVECTION FLOW NEAR THE STAGNATION POINT OF A HEATED VERTICAL PLATE IN A POROUS MEDIUM SATURATED WITH A NANOFLUID
Journal of Porous Media, Vol.21, 2018, issue 4
Abdullah A. Abdullah, Fouad S. Ibrahim, A J Chamkha