Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Computational Thermal Sciences: An International Journal
ESCI SJR: 0.249 SNIP: 0.434 CiteScore™: 1.4

ISSN Druckformat: 1940-2503
ISSN Online: 1940-2554

Computational Thermal Sciences: An International Journal

DOI: 10.1615/ComputThermalScien.v3.i1.20
pages 15-30

NUMERICAL SIMULATION OF HEAT AND MASS TRANSFER BETWEEN HETEROGENEOUS FLOW AND AN OBSTACLE

T. V. Ershova
Institute of High Temperatures of the Russian Academy of Science, Moscow, Russia, 127412
D. S. Mikhatulin
Institute of High Temperatures of the Russian Academy of Science, Moscow, Russia, 127412
Dmitry L. Reviznikov
Moscow Aviation Institute, Volokolamskoe Shosse 4, 125993 Moscow, Russia; Dorodnicyn Computing Centre, Federal Research Center "Computer Science and Control" of Russian Academy of Sciences, 44, b. 2, Vavilov st., Moscow, 119333, Russia
Andrey V. Sposobin
Moscow Aviation Institute, Volokolamskoe Shosse 4, 125993 Moscow, Russia
Vladimir V. Vinnikov
Moscow Aviation Institute (State Technical University), Moscow, Russia

ABSTRAKT

This paper describes the problems of numerical simulation of supersonic gas-particle flow over blunt bodies. A complex mathematical model is proposed, coupling gas flow in the shock layer, particle advection in the carrying phase, and heat- mass transfer in the body that is being destroyed. The Eulerian description fits best for the gas phase, and the Lagrangian description is most suitable for the dispersed phase. Particle dynamics is fully handled via the discrete-element method. The result is a numerical simulation of the thermoerosive destruction of a circular cylinder in two-phase flow. The authors present an analysis of multiple factors, such as interparticle collisions in a flow, particle reflection from a streamlined surface, dispersed admixture feedback on the carrier phase, and the influence of changing body geometry due to mass entrainment on two-phase shock layer parameters.


Articles with similar content:

NUMERICAL SIMULATION OF THE INTERACTION OF A DUSTY FLOW WITH AN OBSTACLE
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2009, issue
T. V. Ershova, Dmitry L. Reviznikov, Vladimir V. Vinnikov, Andrey V. Sposobin, D. S. Mikhatulin
NUMERICAL SIMULATION OF HEAT TRANSFER AND THERMO-EROSION DESTRUCTION OF A BLUNT BODY IN A SUPERSONIC DUSTY FLOW
ICHMT DIGITAL LIBRARY ONLINE, Vol.13, 2008, issue
T. V. Ershova, Dmitry L. Reviznikov, Vladimir V. Vinnikov, Andrey V. Sposobin, D. S. Mikhatulin
Multiphase Eulerian-Lagrangian LES of particulate fouling on structured heat transfer surfaces
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2018, issue
Johann Turnow, Nikolai Kornev, Robert Kasper
Interaction Particle − Turbulence in Dispersed Two-Phase Flows Using the Eulerian − Lagrangian Approach
International Journal of Fluid Mechanics Research, Vol.35, 2008, issue 3
Mohamed Ali Mergheni, J. C. Sautet, H. Ben Ticha, Sassi Ben Nasrallah
The effect of dispersed phase on flow structure in a turbulent two-phase swirling flow downstream of a pipe sudden expansion
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2015, issue
Viktor I. Terekhov, Maksim A. Pakhomov