Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Computational Thermal Sciences: An International Journal
ESCI SJR: 0.249 SNIP: 0.434 CiteScore™: 0.7

ISSN Druckformat: 1940-2503
ISSN Online: 1940-2554

Computational Thermal Sciences: An International Journal

DOI: 10.1615/ComputThermalScien.2019025116
pages 297-314

ON CONTROL OF CONVECTION INTENSITY OF THE REACTING EQUILIBRIUM GAS

Igor B. Palymskiy
Siberian State University of Telecommunications and Information Sciences, 630102, Novosibirsk, Russia
Pavel A. Fomin
Lavrentyev Institute of Hydrodynamics, SB RAS, 630090, Novosibirsk, Russia
Saba Gharehdash
School of Civil Engineering, University of Sydney, Sydney, NSW 2006, Australia

ABSTRAKT

The Rayleigh-Benard convection for a chemical equilibrium gas with inert microparticles is considered in the Boussinesq approximation. The convection is shown to develop in accordance to two contradictory tendencies. On the one hand, continuous processes of recombination and dissociation in the gas mixture are responsible for the increase in the thermal extension coefficient, which decreases the critical Rayleigh number and leads to intensified convection. On the other hand, chemically inert microparticles in the gas mixture cause increased thermal diffusivity and, as a result, the critical Rayleigh number grows while the convection rate decreases with corresponding decreasing of Nusselt number and rms of temperature value.

REFERENZEN

  1. Fedorov, A.V., Fomin, P.A., Fomin, V.M., Tropin, D.A., and Chen, J.-R., Mathematical Analysis of Detonation Suppression by-Inert Particles, Kaohsiung, Taiwan: Kao Tech Publishing, 2012.

  2. Fomin, P.A. and Chen, J.-R., Effect of Chemically Inert Particles on Thermodynamic Characteristics and Detonation of a Combustible Gas, Combust. Sci. Technol., vol. 181, no. 8, pp. 1038-1064,2009.

  3. Gershuni, G.Z. and Zhukhovitskii, E.M., Convective Stability of Incompressible Fluids, Jerusalem: Program for Scientific Translations, 1976.

  4. Getling, A.V., Rayleigh-Benard Convection: Structures and Dynamics, Singapore: World Scientific, 1998.

  5. Nikolaev, Yu.A. and Fomin, P.A., Analysis of Equilibrium Flows of Chemically Reacting Gases, Combust. Explos. Shock Waves, vol. 18, no. 1,pp. 53-58,1982.

  6. Nikolaev, Yu.A. and Fomin, P.A., Approximate Equation of Kinetics in Heterogeneous Systems of Gas-Condensed-Phase Type, Combust. Explos. Shock Waves, vol. 19, no. 6, pp. 737-745,1983.

  7. Nikolaev, Yu.A. and Zak, D.V., Agreement of Models of Chemical Reactions in Gases with the Second Law of Thermodynamics, Combust. Explos. Shock Waves, vol. 24, no. 4, pp. 461-464,1988.

  8. Nikolaev, Yu.A., Model of the Kinetics of Chemical Reactions at High Temperatures, Combust. Explos. Shock Waves, vol. 14, no. 4, pp. 468-471,1978.

  9. Palymskiy, I.B., Fomin, P.A., and Frolov, Il.V., On the Possibility of Controlling the Intensity of Convection in a Chemically Equilibrium Reaction Gas by Varying the Concentration of Inert Microparticles, Combust. Explos. Shock Waves, vol. 54, no. 4, pp. 417-423,2018.

  10. Palymskiy, I.B., Fomin, P.A., and Hieronymus, H., Rayleigh-Benard Convection in a Chemical Equilibrium Gas (Simulation of Surface Detonation Wave Initiation), Appl. Math. Model., vol. 32, no. 5, pp. 660-676, 2008.

  11. Palymskiy, I.B., Fomin, P.A., and Hieronymus, H., The Rayleigh-Benard Convection in Gas with Chemical Reactions, Siberian J. Numer. Math, vol. 10, no. 4, pp. 371-383, 2007.

  12. Palymskiy, I.B., Numerical Simulation of Turbulent Rayleigh-Benard Convection, Prog. Comput. Fluid Dyn., vol. 12, no. 4, pp. 243-250,2012.

  13. Palymskiy, I.B., Palymskiy, V.I., and Fomin, P.A., Rayleigh-Benard Convection in a Chemically Active Gas in the Chemical Equilibrium State, Combust. Explos. Shock Waves, vol. 53, no. 2, pp. 123-133, 2017.

  14. Palymskiy, I.B., Turbulentnaya Konvektziya Rehleya-Benara. Chislennyi Metod i Resultaty Raschetov, Saarbrucken, Germany: LAP, 2011 (in Russian).

  15. Palymskiy, I.B., Vorticity Scale and Integral Values of Rayleigh-Benard Convection, Comput. Therm. Sci., vol. 6, no. 2, pp. 113-127, 2014.


Articles with similar content:

RADIAL INJECTION OF A HOT FLUID INTO A COLD POROUS MEDIUM: THE EFFECTS OF LOCAL THERMAL NONEQUILIBRIUM
Computational Thermal Sciences: An International Journal, Vol.2, 2010, issue 3
Andrew P. Bassom, D. Andrew S. Rees
TURBULENT RAYLEIGH-BENARD CONVECTION UNDER TIME-MODULATED ROTATION CONDITIONS
TSFP DIGITAL LIBRARY ONLINE, Vol.8, 2013, issue
Rudie Kunnen, Bernard J. Geurts
Impact of droplet size distribution on auto-ignition time and flame stabilisation distance in temporally and spatially evolving mixing layers
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2018, issue
Lukasz Kuban, Artur Tyliszczak
CONVECTIVE TRANSPORT IN A NANOFLUID SATURATED POROUS LAYER WITH CROSS DIFFUSION AND VARIATION OF VISCOSITY AND CONDUCTIVITY
Special Topics & Reviews in Porous Media: An International Journal, Vol.6, 2015, issue 1
Monica B. Mohite, Ali J. Chamkha, Jawali C. Umavathi
LINEAR AND NONLINEAR DOUBLE-DIFFUSIVE CONVECTION IN A SATURATED POROUS LAYER WITH SORET EFFECT UNDER LOCAL THERMAL NON-EQUILIBRIUM MODEL
Journal of Porous Media, Vol.21, 2018, issue 13
I. Hashim, B. S. Bhadauria, Anas A. Altawallbeh