Abo Bibliothek: Guest
Computational Thermal Sciences: An International Journal

Erscheint 6 Ausgaben pro Jahr

ISSN Druckformat: 1940-2503

ISSN Online: 1940-2554

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.5 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00017 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.28 SJR: 0.279 SNIP: 0.544 CiteScore™:: 2.5 H-Index: 22

Indexed in

NUMERICAL INVESTIGATION OF ROUND TURBULENT SWIRLING JET IMPINGEMENT HEAT TRANSFER FROM A HOT SURFACE

Volumen 8, Ausgabe 6, 2016, pp. 489-507
DOI: 10.1615/ComputThermalScien.2015014345
Get accessGet access

ABSTRAKT

Numerical investigation of heat transfer from a heated plane circular surface due to round turbulent submerged swirling jet impingement is conducted in this study. A round swirling turbulent jet is impinging normally on a concentric circular hot plane surface. The axisymmetric flow domain is bounded by the hot impingement surface and the jet exit plane. The flow is characterized by the jet exit Reynolds number (Re), the jet exit swirl number (Sw) representing the swirl strength of the inlet flow, and the nondimensional distance of separation from the jet exit to the impingement plate (H). The commercial CFD code ANSYS Fluent along with the transition SST k-ω turbulence model is used for the computations. In order to select a suitable turbulence model for the computations, the performance of a few turbulence models in the computation of round impinging jet heat transfer were validated against experimental data, and the transition SST k-ω model was selected. Computations are performed for many arrangements of the above-mentioned parameters and critical analysis of the heat transfer process is performed. The results indicate negative effect on heat transfer when swirl is present. For low- to mid-range swirl strength when Sw ≤ 0.77, the average Nusselt number drops mildly as Sw is increased from 0 (nonswirling case). When Sw ≥ 1, the average Nusselt number increases mildly with increasing Sw but remains less than that for the nonswirling case. Also when Sw ≤ 0.77, the average Nusselt number increases mildly with increasing jet-to-target separation distance (2 ≤ H ≤ 10). On the other hand, when Sw ≥ 1.00, the average Nusselt number moderately drops as H increases.

REFERENZIERT VON
  1. Afroz Farhana, Sharif Muhammad A.R., Numerical study of turbulent annular impinging jet flow and heat transfer from a flat surface, Applied Thermal Engineering, 138, 2018. Crossref

  2. Afroz Farhana, Sharif Muhammad A. R., Numerical investigation of the heat transfer due to coaxial swirling turbulent jet impingement on heated flat surfaces, 8TH BSME INTERNATIONAL CONFERENCE ON THERMAL ENGINEERING, 2121, 2019. Crossref

  3. Afroz Farhana, Sharif Muhammad A.R., Numerical investigation of heat transfer from a plane surface due to turbulent annular swirling jet impingement, International Journal of Thermal Sciences, 151, 2020. Crossref

  4. Afroz Farhana, Sharif Muhammad A.R., Heat Transfer From a Heated Flat Surface Due to Swirling Coaxial Turbulent Jet Impingement, Journal of Thermal Science and Engineering Applications, 13, 2, 2021. Crossref

Zukünftige Artikel

Positivity Preserving Analysis of Central Schemes for Compressible Euler Equations Souren Misra, Alok Patra, Santosh Kumar Panda A lattice Boltzmann study of nano-magneto-hydrodynamic flow with heat transfer and entropy generation over a porous backward facing-step channel Hassane NAJI, Hammouda Sihem, Hacen Dhahri A Commemorative Volume in Memory of Darrell Pepper David Carrington, Yogesh Jaluria, Akshai Runchal In Memoriam: Professor Darrell W. Pepper – A Tribute to an Exceptional Engineering Educator and Researcher Akshai K. Runchal, David Carrington, SA Sherif, Wilson K. S. Chiu, Jon P. Longtin, Francine Battaglia, Yongxin Tao, Yogesh Jaluria, Michael W. Plesniak, James F. Klausner, Vish Prasad, Alain J. Kassab, John R. Lloyd, Yelena Shafeyeva, Wayne Strasser, Lorenzo Cremaschi, Tom Shih, Tarek Abdel-Salam, Ryoichi S. Amano, Ashwani K. Gupta, Nesrin Ozalp, Ting Wang, Kevin R. Anderson, Suresh Aggarwal, Sumanta Acharya, Farzad Mashayek, Efstathios E. Michaelides, Bhupendra Khandelwal, Xiuling Wang, Shima Hajimirza, Kevin Dowding, Sandip Mazumder, Eduardo Divo, Rod Douglass, Roy E. Hogan, Glen Hansen, Steven Beale, Perumal Nithiarasu, Surya Pratap Vanka, Renato M. Cotta, John A. Reizes, Victoria Timchenko, Ashoke De, Keith A Woodbury, John Tencer, Aaron P. Wemhoff, G.F. ‘Jerry’ Jones, Leitao Chen, Timothy S. Fisher, Sandra K. S. Boetcher, Patrick H. Oosthuizen, Hamidreza Najafi, Brent W. Webb, Satwindar S. Sadhal, Amanie Abdelmessih Modeling of Two-Phase Gas-Liquid Slug Flows in Microchannels Ayyoub Mehdizadeh Momen, SA Sherif, William E. Lear Performance of two dimensional planar curved micronozzle used for gas separation Manu K Sukesan, Shine SR A Localized Meshless Method for Transient Heat Conduction with Applications Kyle Beggs, Eduardo Divo, Alain J. Kassab Non-nested Multilevel Acceleration of Meshless Solution of Heat Conduction in Complex Domains Anand Radhakrishnan, Michael Xu, Shantanu Shahane, Surya P Vanka Assessing the Viability of High-Capacity Photovoltaic Power Plants in Diverse Climatic Zones : A Technical, Economic, and Environmental Analysis Kadir Özbek, Kadir Gelis, Ömer Özyurt MACHINE LEARNING LOCAL WALL STEAM CONDENSATION MODEL IN PRESENCE OF NON-CONDENSABLE FROM TUBE DATA Pavan Sharma LES of Humid Air Natural Convection in Cavity with Conducting Walls Hadi Ahmadi moghaddam, Svetlana Tkachenko, John Reizes, Guan Heng Yeoh, Victoria Timchenko
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen Preise und Aborichtlinien Begell House Kontakt Language English 中文 Русский Português German French Spain