Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Atomization and Sprays
Impact-faktor: 1.262 5-jähriger Impact-Faktor: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 1.6

ISSN Druckformat: 1044-5110
ISSN Online: 1936-2684

Volumes:
Volumen 29, 2019 Volumen 28, 2018 Volumen 27, 2017 Volumen 26, 2016 Volumen 25, 2015 Volumen 24, 2014 Volumen 23, 2013 Volumen 22, 2012 Volumen 21, 2011 Volumen 20, 2010 Volumen 19, 2009 Volumen 18, 2008 Volumen 17, 2007 Volumen 16, 2006 Volumen 15, 2005 Volumen 14, 2004 Volumen 13, 2003 Volumen 12, 2002 Volumen 11, 2001 Volumen 10, 2000 Volumen 9, 1999 Volumen 8, 1998 Volumen 7, 1997 Volumen 6, 1996 Volumen 5, 1995 Volumen 4, 1994 Volumen 3, 1993 Volumen 2, 1992 Volumen 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.v17.i3.30
pages 267-287

ROLE OF VISCOSITY ON TRAJECTORY OF LIQUID JETS IN A CROSS-AIRFLOW

Madjid Birouk
Department of Mechanical and Manufacturing Engineering, University of Manitoba, Winnipeg, MB, R3T 5V6 Canada
C. O. Iyogun
Department of Mechanical and Manufacturing Engineering, University of Manitoba, Winnipeg, MB, R3T 5V6 Canada
Neil Popplewell
Department of Mechanical and Manufacturing Engineering, University of Manitoba, Winnipeg, MB, R3T 5V6 Canada

ABSTRAKT

The effect of liquid viscosity on the penetration and trajectory of a jet in a low subsonic cross-airflow was investigated experimentally. An open-loop wind tunnel was used to generate an airstream in a square cross-sectional test section. Liquid was injected downward through a nozzle that was flush with the top inner surface of the test section. A wide range of experimental conditions was achieved by varying the nozzle diameter, momentum flux ratio, and liquid viscosity. The study revealed that viscosity has distinct effects on the initial part of the liquid column and in the jet's far-field stream. It was shown that far from the nozzle exit, the jet's penetration increased initially as the liquid viscosity increased, but a further increase in viscosity reduced the penetration. On the other hand, close to the nozzle exit, although the effect of liquid viscosity was not obvious, it was generally observed that with the exception of the highest viscosity employed here, the jet's penetration decreased as the viscosity increased. An empirical jet trajectory correlation was proposed to account for the combined effects of viscosity, momentum flux ratio, and nozzle diameter.


Articles with similar content:

PRIMARY BREAKUP OF ROUND AERATED-LIQUID JETS IN SUPERSONIC CROSSFLOWS
Atomization and Sprays, Vol.16, 2006, issue 6
C. Aalburg, Thomas A. Jackson, G. M. Faeth, C. D. Carter, K.-C. Lin, Khaled A. Sallam
Spray Trajectories of Liquid Fuel Jets in Subsonic Crossflows
International Journal of Fluid Mechanics Research, Vol.24, 1997, issue 1-3
R. P. Fuller, P.-K. Wu, K. A. Kirkendall, A. S. Nejad, M. R. Gruber
THE ROLE OF ORIFICE FLOW PATTERN IN FUEL ATOMIZATION
ICLASS 94
Proceedings of the Sixth International Conference on Liquid Atomization and Spray Systems, Vol.0, 1994, issue
Siichi Shiga, Zhen Huang, Hisao Nakamura, Y.M. Shao, Takao Karasawa
PENETRATION OF LIQUID JETS IN A CROSS-FLOW
Atomization and Sprays, Vol.16, 2006, issue 8
Jong Guen Lee, Jacob N. Stenzler, Domenic A. Santavicca, Wonnam Lee
EFFECTS OF CANTED INJECTION ANGLES ON THE SPRAY CHARACTERISTICS OF LIQUID JETS IN SUBSONIC CROSSFLOWS
Atomization and Sprays, Vol.20, 2010, issue 9
Jinkwan Song, Min-Ki Kim, Jeongjae Hwang, Youngbin Yoon