Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Atomization and Sprays
Impact-faktor: 1.262 5-jähriger Impact-Faktor: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 1.6

ISSN Druckformat: 1044-5110
ISSN Online: 1936-2684

Volumes:
Volumen 29, 2019 Volumen 28, 2018 Volumen 27, 2017 Volumen 26, 2016 Volumen 25, 2015 Volumen 24, 2014 Volumen 23, 2013 Volumen 22, 2012 Volumen 21, 2011 Volumen 20, 2010 Volumen 19, 2009 Volumen 18, 2008 Volumen 17, 2007 Volumen 16, 2006 Volumen 15, 2005 Volumen 14, 2004 Volumen 13, 2003 Volumen 12, 2002 Volumen 11, 2001 Volumen 10, 2000 Volumen 9, 1999 Volumen 8, 1998 Volumen 7, 1997 Volumen 6, 1996 Volumen 5, 1995 Volumen 4, 1994 Volumen 3, 1993 Volumen 2, 1992 Volumen 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.v14.i6.40
18 pages

ANALYSIS OF SIZE-CLASSIFIED SPRAY STRUCTURE AND ATOMIZATION MECHANISM FOR A GASOLINE DIRECT INJECTOR

Chang Hee Lee
Department of Mechanical Engineering, Hanyang University, Ansan, South Korea
Chang Sik Lee
School of Mechanical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791, Republic of Korea

ABSTRAKT

In gasoline direct-injection (GDI) engines, atomized spray is desired to achieve efficient mixture formation needed for good engine performance because the injection process leaves little time for the evaporation of fuels. Therefore, a substantial' understanding of global spray structure and quantitative characteristics of sprays are decisive technology to optimize combustion systems of GDI engines.
In this study, the spray characteristics and atomization mechanism of the high-pressure swirl-type GDI injector were analyzed using a phase Doppler anemometer (PDA) system, and the different breakup mechanisms controlling the droplets with various sizes were investigated. In addition, the measured droplet size data were compared with Nukiyama-Tanasawa and Rosin-Rammler distribution functions. From experimental results, the detailed spray structure and factors influencing the atomization mechanism of fuel droplets were investigated with the classification of droplet size. The results also revealed that the Nukiyama-Tanasawa distribution function was found to overestimate the population of small drops and Rosin-Rammler function overestimated the population of large drops.


Articles with similar content:

EXPERIMENTAL INVESTIGATION OF SPRAY CHARACTERISTICS OF DIESEL-METHANOL-WATER EMULSION
Atomization and Sprays, Vol.25, 2015, issue 8
Wuqiang Wang, Shenteng Cao, Dongyin Wu, Junjie Yan, Zhenzhou Pang
EXPERIMENTAL INVESTIGATION ON FUEL FILM FORMATION BY SPRAY IMPINGEMENT ON FLAT WALLS WITH DIFFERENT SURFACE ROUGHNESS
Atomization and Sprays, Vol.27, 2017, issue 7
Youichi Ogata, Keiya Nishida, Shintaro Uchitomi, Wu Zhang, Hongliang Luo, Tatsuya Fujikawa
THE EFFECT OF FLASH BOILING ON THE ATOMIZATION PERFORMANCE OF GASOLINE DIRECT INJECTION MULTISTREAM INJECTORS
Atomization and Sprays, Vol.24, 2014, issue 6
Jerome Helie, Graham Wigley, Mehdi Mojtabi
CHARACTERIZATION OF HIGH-INJECTION-PRESSURE DIESEL SPRAYS WITH RELATION TO PARTICULATE AND NOx EMISSIONS
Atomization and Sprays, Vol.8, 1998, issue 1
T. F. Su, Patrick V. Farrell
EXPERIMENTS ON AIR-ASSIST SPRAY AND SPRAY FLAMES
Atomization and Sprays, Vol.11, 2001, issue 6
Min Su Paek, Sang Heun Oh, Dong Il Kim