Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Atomization and Sprays
Impact-faktor: 1.737 5-jähriger Impact-Faktor: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 2.2

ISSN Druckformat: 1044-5110
ISSN Online: 1936-2684

Volumes:
Volumen 30, 2020 Volumen 29, 2019 Volumen 28, 2018 Volumen 27, 2017 Volumen 26, 2016 Volumen 25, 2015 Volumen 24, 2014 Volumen 23, 2013 Volumen 22, 2012 Volumen 21, 2011 Volumen 20, 2010 Volumen 19, 2009 Volumen 18, 2008 Volumen 17, 2007 Volumen 16, 2006 Volumen 15, 2005 Volumen 14, 2004 Volumen 13, 2003 Volumen 12, 2002 Volumen 11, 2001 Volumen 10, 2000 Volumen 9, 1999 Volumen 8, 1998 Volumen 7, 1997 Volumen 6, 1996 Volumen 5, 1995 Volumen 4, 1994 Volumen 3, 1993 Volumen 2, 1992 Volumen 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.v8.i6.20
pages 625-652

ON THE MODELING OF LIQUID SPRAYS IMPINGING ON SURFACES

Chr. Mundo
University of Erlangen-Nürnberg, Erlangen, Germany
Martin Sommerfeld
Martin Luther Untversitat Halle-Wittenberg Institut fur Verfahrenstechnik, Halle (Saale), Germany; Energetics and Mechanical Department, Universidad Autonoma de Occidente, Santiago de Call, Colombia
Cameron Tropea
Technische Universität Darmstadt, Institute of Fluid Mechanics and Aerodynamics, Center of Smart Interfaces, International Research Training Group Darmstadt-Tokyo on Mathematical Fluid Dynamics, Germany

ABSTRAKT

The aim of the present investigations is the derivation and validation of a new droplet-wall impingement model based on detailed experimental investigations to calculate near-wall polydisperse spray flows. The derived model is based on the definition of the value K = √We√Re, which incorporates both the kinematic parameters of the impinging droplet relative to the wall and the fluid properties. To test the model against experiments, a rather simple spray flow configuration was chosen, in order to reveal clearly the advantages and disadvantages. Furthermore, droplet—wall impingement models introduced by Naber and Reitz [18] and by Wang and Watkins [34] were implemented into the code, and the results were compared to the new model.


Articles with similar content:

TOWARDS WALL-ADAPTION OF TURBULENCE MODELS WITHIN THE LATTICE BOLTZMANN FRAMEWORK
TSFP DIGITAL LIBRARY ONLINE, Vol.9, 2015, issue
Nikolaus A. Adams, Patrick Nathen, Daniel Gaudlitz
TURBULENT EFFECTS OF LIQUID METAL FLOW UNDER STRONG FRINGING MAGNETIC FIELDS
TSFP DIGITAL LIBRARY ONLINE, Vol.6, 2009, issue
Stavros C. Kassinos, X. Albets-Chico, B. Knaepen, D. Grigoriadis
Numerical simulations of turbulent heat transfer in a channel with one wavy wall
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2012, issue
Orsola Errico, Enrico Stalio, D. Angeli, M. Cavazzuti
MODELING OF STEADY-STATE HEAT TRANSFER IN A WATER SPRAY IMPINGEMENT ONTO A HEATED WALL
Atomization and Sprays, Vol.18, 2008, issue 1
J. C. Landero, A. Paul Watkins
THE k-ε MODEL FOR CALCULATION OF HEAT TRANSFER AND FRICTION IN PRESEPARATION FLOWS
Heat Transfer Research, Vol.31, 2000, issue 5
A. V. Gerasimov, E. V. Shishov, Alexander Leontiev