Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Atomization and Sprays
Impact-faktor: 1.737 5-jähriger Impact-Faktor: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 2.2

ISSN Druckformat: 1044-5110
ISSN Online: 1936-2684

Volumes:
Volumen 30, 2020 Volumen 29, 2019 Volumen 28, 2018 Volumen 27, 2017 Volumen 26, 2016 Volumen 25, 2015 Volumen 24, 2014 Volumen 23, 2013 Volumen 22, 2012 Volumen 21, 2011 Volumen 20, 2010 Volumen 19, 2009 Volumen 18, 2008 Volumen 17, 2007 Volumen 16, 2006 Volumen 15, 2005 Volumen 14, 2004 Volumen 13, 2003 Volumen 12, 2002 Volumen 11, 2001 Volumen 10, 2000 Volumen 9, 1999 Volumen 8, 1998 Volumen 7, 1997 Volumen 6, 1996 Volumen 5, 1995 Volumen 4, 1994 Volumen 3, 1993 Volumen 2, 1992 Volumen 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.v16.i7.50
pages 777-790

QUANTIFYING AIR ATOMIZATION OF VISCOELASTIC FLUIDS THROUGH FLUID RELAXATION TIMES

Yenny Christanti
Center for Complex Fluids Engineering, Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213
Lynn M. Walker
Center for Complex Fluids Engineering, Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213

ABSTRAKT

The industrial need to control the atomization of non-Newtonian fluids necessitates an understanding of the influence of fluid rheology and different viscoelastic properties on this complex process. Previous studies of atomization of a pertinent class of non-Newtonian fluids—polymer solutions—provide a wealth of qualitative observations of the effects of viscoelasticity but are often hindered by the inability to decouple different types of non-Newtonian behavior. Here we use a series of well-characterized polymer solutions whose non-Newtonian behavior are dominated by extensional hardening and utilize a fluid relaxation time τ—the key viscoelastic parameter characterizing the onset of extensional hardening—to quantify the atomization process. The model fluids are sprayed via an air atomizer, and the drop size distributions are measured using a diffraction-based size analyzer. The atomization study shows that viscoelasticity increases the mean drop diameter and broadens the size distribution. We incorporate fluid relaxation time into a drop size correlation that predicts the Sauter mean diameter.


Articles with similar content:

EFFERVESCENT ATOMIZATION OF HIGH-VISCOSITY FLUIDS: PART I. NEWTONIAN LIQUIDS
Atomization and Sprays, Vol.1, 1991, issue 3
Paul E. Sojka, Harry N. Buckner
CHARACTERISTICS OF TRANSIENT, SWIRL-GENERATED, HOLLOW-CONE SPRAYS
Atomization and Sprays, Vol.16, 2006, issue 5
Julian T. Kashdan, John S. Shrimpton
RANDOMICITY CHARACTERISTICS OF FLASH EVAPORATION OF PURE WATER DROPLETS IN QUICK DEPRESSURIZATION PROCESS
Interfacial Phenomena and Heat Transfer, Vol.4, 2016, issue 2-3
Jian-Fu Zhao, Kai Li, Wang-Fang Du
PREDICTION OF JET BREAKUP LENGTH IN LIQUID-LIQUID SYSTEMS USING THE RAYLEIGH-TOMOTIKA ANALYSIS
Atomization and Sprays, Vol.7, 1997, issue 5
Tapas K. Das
PREDICTION OF DROP SIZE DISTRIBUTIONS FROM FIRST PRINCIPLES: THE INFLUENCE OF FLUCTUATIONS IN RELATIVE VELOCITY AND LIQUID PHYSICAL PROPERTIES
Atomization and Sprays, Vol.9, 1999, issue 2
Paul E. Sojka, Yudaya R. Sivathanu, Sandeep D. Sovani