Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Atomization and Sprays
Impact-faktor: 1.189 5-jähriger Impact-Faktor: 1.596 SJR: 0.814 SNIP: 1.18 CiteScore™: 1.6

ISSN Druckformat: 1044-5110
ISSN Online: 1936-2684

Volumes:
Volumen 29, 2019 Volumen 28, 2018 Volumen 27, 2017 Volumen 26, 2016 Volumen 25, 2015 Volumen 24, 2014 Volumen 23, 2013 Volumen 22, 2012 Volumen 21, 2011 Volumen 20, 2010 Volumen 19, 2009 Volumen 18, 2008 Volumen 17, 2007 Volumen 16, 2006 Volumen 15, 2005 Volumen 14, 2004 Volumen 13, 2003 Volumen 12, 2002 Volumen 11, 2001 Volumen 10, 2000 Volumen 9, 1999 Volumen 8, 1998 Volumen 7, 1997 Volumen 6, 1996 Volumen 5, 1995 Volumen 4, 1994 Volumen 3, 1993 Volumen 2, 1992 Volumen 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.v20.i6.40
pages 525-552

EFFERVESCENT ATOMIZATION FOR INDUSTRIAL ENERGY−TECHNOLOGY REVIEW

Dancho Konstantinov
School of Engineering, Cardiff University, Wales, United Kingdom
Richard Marsh
School of Engineering, Cardiff University, Wales, United Kingdom
Phil J. Bowen
Cardiff School of Engineering, The Parade, Cardiff, CF24 3AA, United Kingdom
Andrew Crayford
School of Engineering, Cardiff University, Wales, United Kingdom

ABSTRAKT

Effervescent atomization technology is a process employing the creation of a two-phase flow between a liquid fuel and an aerating gas. This technology is receiving renewed interest in the industrial energy field due to its applicability to alternative fuels. This paper presents a review of the principal governing parameters controlling the atomization characteristics of effervescent systems. Previous research in this field has developed a number of systematic parameters relating to the operation of effervescent atomizers but none are universally applicable, i.e., a thorough first-principles-based understanding of effervescent atomization has not yet been achieved. This paper reviews initial operating conditions (gas-to-liquid ratio, pressure drop), fluid properties (liquid viscosity, liquid surface tension, fuel type, atomizing gas molecular weight, non-Newtonian fluids), and geometric constraints (atomizer geometry, exit orifice geometry). There is considerable agreement among researchers with regard to most of these parameters. By contrast, geometric constraints have not been satisfactorily optimized. Recommendations based on experimental work do exist for most geometric constraints. These could, however, almost certainly be further optimized. Also included in this work is a thorough review of the experimental correlations required to develop effervescent atomization systems, including resultant spray characteristics, injector internal flow, and bubble energy.


Articles with similar content:

DROPLET SIZE DISTRIBUTION IN SWIRL ATOMIZERS
Atomization and Sprays, Vol.12, 2002, issue 5&6
Yuriy Khavkin
FLOW PATTERNS IN INTERNAL-MIXING, TWIN-FLUID ATOMIZERS
Atomization and Sprays, Vol.3, 1993, issue 4
Arthur H. Lefebvre, J. S. Chin
CHARACTERIZATION OF SPLASH-PLATE ATOMIZERS USING NUMERICAL SIMULATIONS
Atomization and Sprays, Vol.17, 2007, issue 4
Stuart Morrison, Nasser Ashgriz, Mohammad P. Fard, Denise Levesque
HIGH-PRESSURE-DRIVEN TWIN-JET SPRAYS AND THEIR PROPERTIES
Atomization and Sprays, Vol.24, 2014, issue 5
Y. Han, Michael Zeilmann, Franz Durst
SUPERHEAT LIMIT OF LIQUID MIXTURES
Proceedings of Symposium on Energy Engineering in the 21st Century (SEE2000) Volume I-IV, Vol.0, 2000, issue
Danling Zeng , Chao Liu, Keqiang Xing