Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Atomization and Sprays
Impact-faktor: 1.262 5-jähriger Impact-Faktor: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 1.6

ISSN Druckformat: 1044-5110
ISSN Online: 1936-2684

Volumes:
Volumen 29, 2019 Volumen 28, 2018 Volumen 27, 2017 Volumen 26, 2016 Volumen 25, 2015 Volumen 24, 2014 Volumen 23, 2013 Volumen 22, 2012 Volumen 21, 2011 Volumen 20, 2010 Volumen 19, 2009 Volumen 18, 2008 Volumen 17, 2007 Volumen 16, 2006 Volumen 15, 2005 Volumen 14, 2004 Volumen 13, 2003 Volumen 12, 2002 Volumen 11, 2001 Volumen 10, 2000 Volumen 9, 1999 Volumen 8, 1998 Volumen 7, 1997 Volumen 6, 1996 Volumen 5, 1995 Volumen 4, 1994 Volumen 3, 1993 Volumen 2, 1992 Volumen 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.v11.i5.10
14 pages

ABSOLUTE AND CONVECTIVE INSTABILITY OF ANNULAR VISCOUS LIQUID JETS IN GAS STREAMS

Jihua Shen
Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario, Canada

ABSTRAKT

Department of Mechanical Engineering, University of Waterloo, Waterloo, Ontario, Canada This article reports the absolute and convective instability of an annular viscous liquid jet with its inner and outer surfaces exposed to inviscid gas streams of unequal velocities. The effects of geometric and various flow parameters are investigated. It is found that both absolute and convective instability exist for para-sinuous and -varicose modes under certain flow conditions. For para-sinuous mode, the annular liquid jet, with an inner gas moving at relatively small velocities, can have either convective or absolute instability, depending on specific flow conditions. However, the jet is of only absolute instability if the inner gas is stationary or moves at sufficiently large velocities. Para-sinuous unstable waves outgrow para-varicose waves and hence dominate the jet instability process, according to both absolute and convective instability analyses. The liquid viscosity has a stabilizing effect on the jet instability, but the gas inertial force shows a fairly complex influence on the absolute instability. The convective growth rates for various inner gas velocities indicate that not only the velocity difference between, but also the absolute velocity of the liquid and gas, determine the jet breakup process.


Articles with similar content:

DUAL-MODE LINEAR ANALYSIS OF TEMPORAL INSTABILITY FOR POWER-LAW LIQUID SHEET
Atomization and Sprays, Vol.26, 2016, issue 4
Han-Yu Deng, Xiao-Song Wu, Feng Feng
ABSOLUTE AND CONVECTIVE INSTABILITY OF CYLINDRICAL LIQUID JETS IN CO-FLOWING GAS STREAMS
Atomization and Sprays, Vol.8, 1998, issue 1
Xianguo Li, Jihua Shen
AXISYMMETRIC AND ASYMMETRIC INSTABILITIES OF A NON-NEWTONIAN LIQUID JET MOVING IN AN INVISCID STREAMING GAS THROUGH POROUS MEDIA
Journal of Porous Media, Vol.19, 2016, issue 9
F. M. F. Elsabaa, G. M. Moatimid, Mohamed F. El-Sayed, M. F. E. Amer
THEORETICAL ANALYSIS OF SURFACE WAVES ON A ROUND LIQUID JET IN A GASEOUS CROSSFLOW
Atomization and Sprays, Vol.24, 2014, issue 1
Yong Huang, Shaolin Wang, Z. L. Liu
INSTABILITY OF A VISCOELASTIC INCOMPRESSIBLE LIQUID SHEET IN COMPRESSIBLE AMBIENT GAS
Atomization and Sprays, Vol.26, 2016, issue 1
Chao-Jie Mo, Ming-Xi Tong, Yu-Xin Liu, Li-Jun Yang, Lu-Jia Liu