Abo Bibliothek: Guest
Atomization and Sprays

Erscheint 12 Ausgaben pro Jahr

ISSN Druckformat: 1044-5110

ISSN Online: 1936-2684

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.2 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.8 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00095 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.28 SJR: 0.341 SNIP: 0.536 CiteScore™:: 1.9 H-Index: 57

Indexed in

IMPINGING DIESEL SPRAYS

Volumen 18, Ausgabe 2, 2008, pp. 97-127
DOI: 10.1615/AtomizSpr.v18.i2.10
Get accessGet access

ABSTRAKT

Diesel fuel sprays from a common-rail injector have been optically investigated with respect to their macroscale characteristics. The tested nozzle designs were of standard plain orifice type, as well as the impinging-spray type, in which two orifices intersect at a specific angle at the exit. Testing was conducted using a pressurized vessel at room temperature. The impinging sprays were found to be low penetrating and widely dispersed compared to the nonimpinging sprays. The shape of the impinging sprays was as one homogeneous spray with no trace of individual sprays. It was found that impinging diesel sprays can be predicted in a manner similar to standard nonimpinging sprays, using a dimensionless penetration correlation. The cone angle of the impinging sprays increases with the impingement angle, and in contrast to nonimpinging sprays, appears insensitive to ambient density. The results indicate that the impinging spray has a larger spray volume at lower ambient densities. However, at higher ambient densities, the volume of the nonimpinging sprays is larger.

REFERENZIERT VON
  1. Muggleton R, Haghshenasfard M, Hooman K, Numerical simulation of mixture homogenization through jet impingement on cylindrical obstacles, Fluid Dynamics Research, 50, 4, 2018. Crossref

Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen Preise und Aborichtlinien Begell House Kontakt Language English 中文 Русский Português German French Spain