Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Atomization and Sprays
Impact-faktor: 1.262 5-jähriger Impact-Faktor: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 1.6

ISSN Druckformat: 1044-5110
ISSN Online: 1936-2684

Volumes:
Volumen 29, 2019 Volumen 28, 2018 Volumen 27, 2017 Volumen 26, 2016 Volumen 25, 2015 Volumen 24, 2014 Volumen 23, 2013 Volumen 22, 2012 Volumen 21, 2011 Volumen 20, 2010 Volumen 19, 2009 Volumen 18, 2008 Volumen 17, 2007 Volumen 16, 2006 Volumen 15, 2005 Volumen 14, 2004 Volumen 13, 2003 Volumen 12, 2002 Volumen 11, 2001 Volumen 10, 2000 Volumen 9, 1999 Volumen 8, 1998 Volumen 7, 1997 Volumen 6, 1996 Volumen 5, 1995 Volumen 4, 1994 Volumen 3, 1993 Volumen 2, 1992 Volumen 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.v16.i4.50
pages 421-442

SPRAY CHARACTERISTICS OF CHARGE INJECTION ELECTROSTATIC ATOMIZERS WITH SMALL-ORIFICE DIAMETERS

A. R. H. Rigit
Faculty of Engineering, University of Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
John S. Shrimpton
Energy Technology Research Group, School of Engineering Sciences, University of Southampton, United Kingdom, SO171BJ

ABSTRAKT

Here the characteristics of charged sprays of insulating liquids generated by an improved charge injection (electrostatic) atomizer design are described, and the experimental database previously available in the literature is extended to a smaller range of orifice diameters and to more viscous liquids. Previously identified “subcritical” and “supercritical” electrohydrodynamic (EHD) regimes for the atomizer are confirmed to be present for the viscosity and orifice diameter ranges studied here, showing that these EHD regimes appear to be generic to the atomization method. The jet breakup dynamics and length are qualitatively and quantitatively studied using imaging and phase Doppler anemometry (PDA), and the general spray plume characteristics are quantitatively described in terms of droplet velocity and diameter probability density functions (PDFs). Radial spray charge and mass flow rates are quantified as using a purpose-built collecting system. By appropriately normalizing the data, the degree of self-similarity between different spray data sets is clearly evident and proves that the near-axis droplets are poorly charged and that the mean specific charge increases with radial displacement, again in a self-similar manner.


Articles with similar content:

ELECTROSTATICALLY PRODUCED FUEL SPRAYS FOR COMBUSTION APPLICATIONS
ICLASS 94
Proceedings of the Sixth International Conference on Liquid Atomization and Spray Systems, Vol.0, 1994, issue
John S. Shrimpton, D. Hu, Andrew J. Yule, W. Balachandran, A. Paul Watkins
AIR-ASSIST PRESSURE-SWIRL ATOMIZATION
Atomization and Sprays, Vol.9, 1999, issue 2
Paul E. Sojka, U. T. Schmidt
A HOLOGRAPHIC INVESTIGATION OF THE NEAR-NOZZLE STRUCTURE OF AN EFFERVESCENT ATOMIZER-PRODUCED SPRAY
Atomization and Sprays, Vol.5, 1995, issue 2
Paul E. Sojka, Philip J. Santangelo
Development of a Diesel Spray Atomization Model Considering Nozzle Flow Characteristics
International Journal of Fluid Mechanics Research, Vol.24, 1997, issue 4-6
Kang Y. Huh, Eunju Lee, Jaye Koo
ATOMIZATION OF WATER BASED METALLIC PAINT BY MEANS OF ELECTROSTATION ROTARY ATOMIZERS
ICLASS 94
Proceedings of the Sixth International Conference on Liquid Atomization and Spray Systems, Vol.0, 1994, issue
Gunther Schulte, T. Scholz, Klaus Bauckhage