Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Atomization and Sprays
Impact-faktor: 1.262 5-jähriger Impact-Faktor: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 1.6

ISSN Druckformat: 1044-5110
ISSN Online: 1936-2684

Volumen 29, 2019 Volumen 28, 2018 Volumen 27, 2017 Volumen 26, 2016 Volumen 25, 2015 Volumen 24, 2014 Volumen 23, 2013 Volumen 22, 2012 Volumen 21, 2011 Volumen 20, 2010 Volumen 19, 2009 Volumen 18, 2008 Volumen 17, 2007 Volumen 16, 2006 Volumen 15, 2005 Volumen 14, 2004 Volumen 13, 2003 Volumen 12, 2002 Volumen 11, 2001 Volumen 10, 2000 Volumen 9, 1999 Volumen 8, 1998 Volumen 7, 1997 Volumen 6, 1996 Volumen 5, 1995 Volumen 4, 1994 Volumen 3, 1993 Volumen 2, 1992 Volumen 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.v20.i4.30
pages 297-310


Jie Liu
Department of Mechanical Engineering, University of California-Riverside, USA
Henry Vu
Department of Mechanical Engineering, University of California-Riverside, Riverside, USA , Advatech Pacific, Incorporated, Advanced Technology Division, Palmdale, California 93550, USA
Sam S. Yoon
Mechanical Engineering Department, Korea University, Anamdong, 5-Ga, Sungbukgu, Seoul, 136-713, Korea
Richard A. Jepsen
Mechanical Environments, Sandia National Laboratory, P.O. Box 5800, Albuquerque, New Mexico 87185-1135, USA
Guillermo Aguilar
Department of Mechanical Engineering, University of California-Riverside, Riverside, California 92507, USA


Splashing is a phenomenon often observed during liquid droplet impact onto a solid surface. The threshold of splashing is known to be related to droplet size, impact velocity, and physical properties of the liquid, but the mechanisms that initiate splashing are not understood completely. In accordance with the Kelvin-Helmholtz (K-H) instability analysis, recent studies have shown that ambient gas density has a significant effect on the threshold and trajectory of splashing. In this study, the effects of droplet velocity, impact angle, and ambient gas pressure (or density) on the threshold of splashing and the motion of the ambient gas surrounding the droplet were examined. Experimental observations of splashing were carried out with a droplet of 1.7 mm in diameter, while varying droplet velocity, impact angle, and ambient pressure. An empirical correlation was derived using our and other published data to determine the threshold of splashing based on the aforementioned parameters. Also, a numerical simulation using the volume of fluid method was carried out to calculate the gas velocities surrounding the droplet during impact. The results of this model gave supportive evidence that K-H instability is a suitable instability theory that helps explain the splash phenomenon with consideration of the gas motion surrounding the droplet.