Abo Bibliothek: Guest
Atomization and Sprays

Erscheint 12 Ausgaben pro Jahr

ISSN Druckformat: 1044-5110

ISSN Online: 1936-2684

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.2 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.8 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00095 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.28 SJR: 0.341 SNIP: 0.536 CiteScore™:: 1.9 H-Index: 57

Indexed in

DETAILED NUMERICAL INVESTIGATION OF TURBULENT ATOMIZATION OF LIQUID JETS

Volumen 20, Ausgabe 4, 2010, pp. 311-336
DOI: 10.1615/AtomizSpr.v20.i4.40
Get accessGet access

ABSTRAKT

A detailed numerical investigation of turbulent liquid jets in quiescent air is conducted, with the focus on the processes leading to liquid atomization. Spectral refinement of the interface is employed to provide an accurate description of the phase interface, even at the subcell level. The ghost fluid method is used to handle the different material properties of the phases and the surface tension force in a sharp manner. A temporally evolving turbulent planar jet is simulated for several values of the Reynolds and Weber numbers, and statistics are extracted. Direct visualization of the flow structures allows one to lay out a clear picture of the atomization process. Early interface deformation is caused by turbulent eddies that carry enough kinetic energy to overcome surface tension forces. Then, liquid protrusions are stretched out into ligaments that rupture following Rayleigh’s theory or due to aerodynamic forces. This numerical study provides a wealth of much-needed detailed information on the turbulent atomization process, which is invaluable to large eddy simulation modeling.

REFERENZIERT VON
  1. Pepiot Perrine, Desjardins Olivier, Numerical analysis of the dynamics of two- and three-dimensional fluidized bed reactors using an Euler–Lagrange approach, Powder Technology, 220, 2012. Crossref

  2. Aniszewski W., Bogusławski A., Marek M., Tyliszczak A., A new approach to sub-grid surface tension for LES of two-phase flows, Journal of Computational Physics, 231, 21, 2012. Crossref

  3. Herrmann M., A sub-grid surface dynamics model for sub-filter surface tension induced interface dynamics, Computers & Fluids, 87, 2013. Crossref

  4. Sadik Shalom, Kirzhner Felix, Kramarenko Denis, Turned trochoidal disturbance on a liquid jet surface, Chinese Journal of Mechanical Engineering, 27, 4, 2014. Crossref

  5. Sánchez Antonio L., Urzay Javier, Liñán Amable, The role of separation of scales in the description of spray combustion, Proceedings of the Combustion Institute, 35, 2, 2015. Crossref

  6. Jarrahbashi D., Sirignano W. A., Vorticity dynamics for transient high-pressure liquid injection, Physics of Fluids, 26, 10, 2014. Crossref

  7. Kourmatzis Agissilaos, Pham Phuong X., Masri Assaad R., Characterization of atomization and combustion in moderately dense turbulent spray flames, Combustion and Flame, 162, 4, 2015. Crossref

  8. Wang Yue, Qiu Lu, Reitz Rolf D., Diwakar Ramachandra, Simulating cavitating liquid jets using a compressible and equilibrium two-phase flow solver, International Journal of Multiphase Flow, 63, 2014. Crossref

  9. Sadik Shalom, Kirzhner Felix, Kramarenko Denis, Turned trochoidal disturbance on a liquid jet surface, Chinese Journal of Mechanical Engineering, 27, 4, 2014. Crossref

  10. Ren ZhuYin, Lu Zhen, Hou LingYun, Lu LiuYan, Numerical simulation of turbulent combustion: Scientific challenges, Science China Physics, Mechanics & Astronomy, 57, 8, 2014. Crossref

  11. Shao Changxiao, Luo Kun, Yang Jianshan, Chen Song, Fan Jianren, Accurate level set method for simulations of liquid atomization, Chinese Journal of Chemical Engineering, 23, 4, 2015. Crossref

  12. Deshpande Suraj S., Gurjar Soumil R., Trujillo Mario F., A computational study of an atomizing liquid sheet, Physics of Fluids, 27, 8, 2015. Crossref

  13. Luo Kun, Shao Changxiao, Yang Yue, Fan Jianren, A mass conserving level set method for detailed numerical simulation of liquid atomization, Journal of Computational Physics, 298, 2015. Crossref

  14. Örley F., Trummler T., Hickel S., Mihatsch M. S., Schmidt S. J., Adams N. A., Large-eddy simulation of cavitating nozzle flow and primary jet break-up, Physics of Fluids, 27, 8, 2015. Crossref

  15. Giussani F., Montorfano A., Piscaglia F., Onorati A., Hélie J., Aithal S.M., Dynamic VOF Modelling of the Internal Flow in GDI Fuel Injectors, Energy Procedia, 101, 2016. Crossref

  16. Li Xiaoyi, Soteriou Marios C., High fidelity simulation and analysis of liquid jet atomization in a gaseous crossflow at intermediate Weber numbers, Physics of Fluids, 28, 8, 2016. Crossref

  17. Zandian Arash, Sirignano William A., Hussain Fazle, Three-dimensional liquid sheet breakup: vorticity dynamics, 54th AIAA Aerospace Sciences Meeting, 2016. Crossref

  18. Jarrahbashi D., Sirignano W. A., Popov P. P., Hussain F., Early spray development at high gas density: hole, ligament and bridge formations, Journal of Fluid Mechanics, 792, 2016. Crossref

  19. Grosshans H., Movaghar A., Cao L., Oevermann M., Szász R.-Z., Fuchs L., Sensitivity of VOF simulations of the liquid jet breakup to physical and numerical parameters, Computers & Fluids, 136, 2016. Crossref

  20. Zandian A., Sirignano W. A., Hussain F., Planar liquid jet: Early deformation and atomization cascades, Physics of Fluids, 29, 6, 2017. Crossref

  21. Movaghar A., Linne M., Herrmann M., Kerstein A.R., Oevermann M., Modeling and numerical study of primary breakup under diesel conditions, International Journal of Multiphase Flow, 98, 2018. Crossref

  22. Li Xiaoyi, Soteriou Marios C., High Fidelity Simulation of the Impact of Pressure Conditions on Liquid Jet in Crossflow Atomization, 55th AIAA Aerospace Sciences Meeting, 2017. Crossref

  23. Bode Mathis, Davidovic Marco, Pitsch Heinz, Multi-scale Coupling for Predictive Injector Simulations, in High-Performance Scientific Computing, 10164, 2017. Crossref

  24. Saeedipour Mahdi, Schneiderbauer Simon, Plohl Gregor, Brenn Günter, Pirker Stefan, Multiscale simulations and experiments on water jet atomization, International Journal of Multiphase Flow, 95, 2017. Crossref

  25. Li Xiaoyi, Gao Hui, Soteriou Marios C., Investigation of the impact of high liquid viscosity on jet atomization in crossflow via high-fidelity simulations, Physics of Fluids, 29, 8, 2017. Crossref

  26. Neal Nicholas, Rothamer David, Evolving one-dimensional transient jet modeling by integrating jet breakup physics, International Journal of Engine Research, 18, 9, 2017. Crossref

  27. Zandian A., Sirignano W. A., Hussain F., Understanding liquid-jet atomization cascades via vortex dynamics, Journal of Fluid Mechanics, 843, 2018. Crossref

  28. Bravo Luis G., Kim Dokyun, Ham Frank, Kerner Kevin A., High Fidelity Simulations of Primary Breakup and Vaporization of Liquid Jet in Cross Flow (JICF), 2018 Joint Propulsion Conference, 2018. Crossref

  29. Hasslberger Josef, Klein Markus, Chakraborty Nilanjan, Flow topologies in bubble-induced turbulence: a direct numerical simulation analysis, Journal of Fluid Mechanics, 857, 2018. Crossref

  30. Laurila E., Roenby J., Maakala V., Peltonen P., Kahila H., Vuorinen V., Analysis of viscous fluid flow in a pressure-swirl atomizer using large-eddy simulation, International Journal of Multiphase Flow, 113, 2019. Crossref

  31. Li Xiaoyi, Soteriou Marios C., Detailed numerical simulation of liquid jet atomization in crossflow of increasing density, International Journal of Multiphase Flow, 104, 2018. Crossref

  32. Schmidt S., Krüger O., Göckeler K., Paschereit C. O., Numerical investigation of the breakup behavior of an oscillating two-phase jet, Physics of Fluids, 30, 7, 2018. Crossref

  33. Lakehal Djamel, Status and future developments of Large-Eddy Simulation of turbulent multi-fluid flows (LEIS and LESS), International Journal of Multiphase Flow, 104, 2018. Crossref

  34. Bravo L., Kim D., Ham F., Powell C., Kastengren A., Effects of fuel viscosity on the primary breakup dynamics of a high-speed liquid jet with comparison to X-ray radiography, Proceedings of the Combustion Institute, 37, 3, 2019. Crossref

  35. Fan Xiaofeng, Wang Jiangfeng, Zhao Faming, Li Jiawei, Yang Tianpeng, Eulerian–Lagrangian method for liquid jet atomization in supersonic crossflow using statistical injection model, Advances in Mechanical Engineering, 10, 2, 2018. Crossref

  36. Hasslberger Josef, Ketterl Sebastian, Klein Markus, Chakraborty Nilanjan, Flow topologies in primary atomization of liquid jets: a direct numerical simulation analysis, Journal of Fluid Mechanics, 859, 2019. Crossref

  37. Magnotti Gina M., Genzale Caroline L., Exploration of Turbulent Atomization Mechanisms for Diesel Spray Simulations, SAE Technical Paper Series, 1, 2017. Crossref

  38. Lu Jiacai, Tryggvason Gretar, Multifluid flows in a vertical channel undergoing topology changes: Effect of void fraction, Physical Review Fluids, 4, 8, 2019. Crossref

  39. Zandian Arash, Sirignano William A., Hussain Fazle, Length-scale cascade and spread rate of atomizing planar liquid jets, International Journal of Multiphase Flow, 113, 2019. Crossref

  40. Arote Ashish, Bade Mukund, Banerjee Jyotirmay, Numerical investigations on stability of the spatially oscillating planar two-phase liquid jet in a quiescent atmosphere, Physics of Fluids, 31, 11, 2019. Crossref

  41. Battistoni Michele, Magnotti Gina M., Genzale Caroline L., Arienti Marco, Matusik Katarzyna E., Duke Daniel J., Giraldo Jhoan, Ilavsky Jan, Kastengren Alan L., Powell Christopher F., Marti-Aldaravi Pedro, Experimental and Computational Investigation of Subcritical Near-Nozzle Spray Structure and Primary Atomization in the Engine Combustion Network Spray D, SAE International Journal of Fuels and Lubricants, 11, 4, 2018. Crossref

  42. Evrard Fabien, Denner Fabian, van Wachem Berend, A multi-scale approach to simulate atomisation processes, International Journal of Multiphase Flow, 119, 2019. Crossref

  43. Luo Kun, Shao Changxiao, Chai Min, Fan Jianren, Level set method for atomization and evaporation simulations, Progress in Energy and Combustion Science, 73, 2019. Crossref

  44. Ling Yue, Zhang Bo, High-Fidelity Simulation of Primary Breakup of a “Spray G” Gasoline Jet with an Adaptive Mesh Refinement and Volume-of-Fluid Method, SAE Technical Paper Series, 1, 2020. Crossref

  45. Li Xiaoyi, Sensitivity of Lagrangian Spray Model Prediction to Operating Conditions Evaluated Using High Fidelity Crossflow Atomization Simulations, AIAA Scitech 2020 Forum, 2020. Crossref

  46. Le Touze C., Dorey L.-H., Rutard N., Murrone A., A compressible two-phase flow framework for Large Eddy Simulations of liquid-propellant rocket engines, Applied Mathematical Modelling, 84, 2020. Crossref

  47. Torregrosa Antonio J., Payri Raúl, Javier Salvador F., Crialesi-Esposito Marco, Study of turbulence in atomizing liquid jets, International Journal of Multiphase Flow, 129, 2020. Crossref

  48. Zhang Bo, Popinet Stephane, Ling Yue, Modeling and detailed numerical simulation of the primary breakup of a gasoline surrogate jet under non-evaporative operating conditions, International Journal of Multiphase Flow, 130, 2020. Crossref

  49. Ong Yong Liang, Salehi Fatemeh, Ghiji Mohammadmahdi, Garaniya Vikram, Numerical study on the effect of injection pressure on high-pressure diesel spray, Combustion Theory and Modelling, 25, 2, 2021. Crossref

  50. Jofre Lluís, Dodd Michael S., Grau Joan, Torres Ricardo, Near-interface flow modeling in large-eddy simulation of two-phase turbulence, International Journal of Multiphase Flow, 132, 2020. Crossref

  51. Arote Ashish, Bade Mukund, Banerjee Jyotirmay, On coherent structures of spatially oscillating planar liquid jet developing in a quiescent atmosphere, Physics of Fluids, 32, 8, 2020. Crossref

  52. Constante-Amores C. R., Kahouadji L., Batchvarov A., Shin S., Chergui J., Juric D., Matar O. K., Rico and the jets: Direct numerical simulations of turbulent liquid jets, Physical Review Fluids, 5, 11, 2020. Crossref

  53. Kozul Melissa, Costa Pedro S., Dawson James R., Brandt Luca, Aerodynamically driven rupture of a liquid film by turbulent shear flow, Physical Review Fluids, 5, 12, 2020. Crossref

  54. Tretola G., Vogiatzaki K., Navarro-Martinez S., Implementation of a probabilistic surface density volume of fluid approach for spray atomisation, Computers & Fluids, 230, 2021. Crossref

  55. Schwarz Philip, Blume Martin, Weiß Lukas, Wensing Michael, Skoda Romuald, 3D simulation of a ballistic direct injection cycle for the assessment of fuel property effects on cavitating injector internal flow dynamics and primary breakup, Fuel, 308, 2022. Crossref

  56. Constante-Amores C.R., Kahouadji L., Batchvarov A., Shin S., Chergui J., Juric D., Matar O.K., Direct numerical simulations of transient turbulent jets: vortex-interface interactions, Journal of Fluid Mechanics, 922, 2021. Crossref

  57. Saeedipour Mahdi, Schneiderbauer Simon, Favre-filtered LES-VOF of two-phase flows with eddy viscosity-based subgrid closure models: An a-posteriori analysis, International Journal of Multiphase Flow, 144, 2021. Crossref

  58. Atomization and Spray Formation, in Collision Phenomena in Liquids and Solids, 2017. Crossref

  59. Salvador F.J., Pastor J.M., De la Morena J., Martínez-Miracle E.C., Computational study on the influence of nozzle eccentricity in spray formation by means of Eulerian Σ - Y coupled simulations in diesel injection nozzles, International Journal of Multiphase Flow, 129, 2020. Crossref

  60. Crialesi-Esposito Marco, Gonzalez-Montero L.A., Salvador F.J., Effects of isotropic and anisotropic turbulent structures over spray atomization in the near field, International Journal of Multiphase Flow, 150, 2022. Crossref

  61. Khandekar Sameer, Sahu Gopinath, Muralidhar K., Gatapova Elizaveta Ya, Kabov Oleg A., Hu Run, Luo Xiaobing, Zhao Liang, Cooling of high-power LEDs by liquid sprays: Challenges and prospects, Applied Thermal Engineering, 184, 2021. Crossref

  62. Bodhanwalla Hormuzd, Arote Ashish , Banerjee Jyotirmay, LINEAR STABILITY ANALYSIS OF NAPPE OSCILLATIONS , Journal of Flow Visualization and Image Processing, 29, 4, 2022. Crossref

Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen Preise und Aborichtlinien Begell House Kontakt Language English 中文 Русский Português German French Spain