Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Atomization and Sprays
Impact-faktor: 1.737 5-jähriger Impact-Faktor: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 2.2

ISSN Druckformat: 1044-5110
ISSN Online: 1936-2684

Volumes:
Volumen 30, 2020 Volumen 29, 2019 Volumen 28, 2018 Volumen 27, 2017 Volumen 26, 2016 Volumen 25, 2015 Volumen 24, 2014 Volumen 23, 2013 Volumen 22, 2012 Volumen 21, 2011 Volumen 20, 2010 Volumen 19, 2009 Volumen 18, 2008 Volumen 17, 2007 Volumen 16, 2006 Volumen 15, 2005 Volumen 14, 2004 Volumen 13, 2003 Volumen 12, 2002 Volumen 11, 2001 Volumen 10, 2000 Volumen 9, 1999 Volumen 8, 1998 Volumen 7, 1997 Volumen 6, 1996 Volumen 5, 1995 Volumen 4, 1994 Volumen 3, 1993 Volumen 2, 1992 Volumen 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.v13.i23.20
18 pages

ELECTROHYDRODYNAMICS OF CHARGE INJECTION ATOMIZATION: REGIMES AND FUNDAMENTAL LIMITS

John S. Shrimpton
Energy Technology Research Group, School of Engineering Sciences, University of Southampton, United Kingdom, SO171BJ

ABSTRAKT

The dynamics and controlling mechanisms of a charge injection electrostatic atomization method for insulating liquids have been investigated using a sharp electrode as a current source, which is placed inside the atomizer and held at a high electrical potential. The method is applicable to highly insulating liquids such as hydrocarbon oils and oil-based solutions, and potential uses of this technology include combustion systems and high-quality spray coating/deposition applications. Subcritical and supercritical flow regimes of atomizer operation are delineated by different types of electrical breakdown. The subcritical flow regime is limited by an insulation failure of the liquid hydrocarbon itself and occurs inside the atomizer. This regime, although of interest to understand the fundamental nature of the electrohydromechanics, does not produce finely atomized sprays. Atomization performance in the supercritical flow regime is characterized by the maximum spray specific charge being limited by a partial discharge in the gas outside the nozzle, around the liquid jet as it emerges from the nozzle. In this case, finely atomized sprays are possible, and with no electrical limitation on the upper flow rate limit. The maximum spray specific charge achievable in the supercritical regime has been found to increase at larger nozzle exit velocities and also for smaller orifice diameters. These two factors, combined with the increased aerodynamic shear acting on the charged liquid jet as it emerges from the orifice at higher velocities, enhances the destabilization of the charged liquid jet to produce finely atomized and well-dispersed sprays of insulating liquids.


Articles with similar content:

ATOMIZATION, COMBUSTION, AND CONTROL OF CHARGED HYDROCARBON SPRAYS
Atomization and Sprays, Vol.11, 2001, issue 4
John S. Shrimpton
ROLE OF GEOMETRIC PARAMETERS ON THE DROP SIZE CHARACTERISTICS OF LIQUID-LIQUID COAXIAL SWIRL ATOMIZERS
Atomization and Sprays, Vol.8, 1998, issue 5
D. Sivakumar, B. N. Raghunandan
EFFECTS OF CANTED INJECTION ANGLES ON THE SPRAY CHARACTERISTICS OF LIQUID JETS IN SUBSONIC CROSSFLOWS
Atomization and Sprays, Vol.20, 2010, issue 9
Jinkwan Song, Min-Ki Kim, Jeongjae Hwang, Youngbin Yoon
SPRAY CHARACTERISTICS OF CHARGE INJECTION ELECTROSTATIC ATOMIZERS WITH SMALL-ORIFICE DIAMETERS
Atomization and Sprays, Vol.16, 2006, issue 4
John S. Shrimpton, A. R. H. Rigit
TRANSITIONAL INSTABILITY OF A PRESSURE-SWIRL ATOMIZER DUE TO AIR-CORE ERUPTION AT LOW TEMPERATURE
Atomization and Sprays, Vol.17, 2007, issue 6
Sam S. Yoon, Byung-Sung Park, Ho Young Kim