Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Atomization and Sprays
Impact-faktor: 1.262 5-jähriger Impact-Faktor: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 1.6

ISSN Druckformat: 1044-5110
ISSN Online: 1936-2684

Volumes:
Volumen 29, 2019 Volumen 28, 2018 Volumen 27, 2017 Volumen 26, 2016 Volumen 25, 2015 Volumen 24, 2014 Volumen 23, 2013 Volumen 22, 2012 Volumen 21, 2011 Volumen 20, 2010 Volumen 19, 2009 Volumen 18, 2008 Volumen 17, 2007 Volumen 16, 2006 Volumen 15, 2005 Volumen 14, 2004 Volumen 13, 2003 Volumen 12, 2002 Volumen 11, 2001 Volumen 10, 2000 Volumen 9, 1999 Volumen 8, 1998 Volumen 7, 1997 Volumen 6, 1996 Volumen 5, 1995 Volumen 4, 1994 Volumen 3, 1993 Volumen 2, 1992 Volumen 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.2011003586
pages 349-361

CHARACTERISTICS OF HOLLOW CONE SPRAYS IN CROSSFLOW

Suraj Deshpande
Department of Mechanical Engineering, University of Wisconsin, Madison, Wisconsin 53706, USA
Jian Gao
Advanced Photon Source, Argonne National Laboratory, Argonne, USA; Propulsion Systems Research Lab., General Motors Global Research and Development, Warren, USA
Mario F. Trujillo
Department of Mechanical Engineering, University of Wisconsin-Madison, 1513 University Ave., Madison WI 53706, USA

ABSTRAKT

A qualitative and quantitative study of a hollow cone spray exposed to a cross-flowing stream of air is presented, based on the conventional Lagrangian-Eulerian point parcel spray treatment. The flow solver employs the open source library of computational mechanics solvers of OpenFOAM. Globally, the spray can be categorized by a near- and far-field region, where the demarcation makes use of the magnitude of the individual droplet drag force. In the near field the vertical spray momentum largely dominates the gas flow momentum and forces it to bend downward. Within this near field we show that two conditions−weak crossflow and strong crossflow−can be identified, depending upon the strength of crossflow in relation to the induced air motion. While this is in agreement with Ghosh and Hunt (1998), we differ in the approach taken and the spray geometry studied. In the case of a weak crossflow, the spray severely deflects the crossflow streamlines, forcing the lee side streamlines to converge toward the center of the spray. In the case of a strong crossflow, the streamlines are deflected; nevertheless, they penetrate the spray. This has a significant impact on the topology of the spray structure, which has not been previously presented. In the far field the center streamline of the spray-induced air jet agrees extremely well with a single-phase jet trajectory. This behavior is shown to be independent of grid resolution and of atomization model.


Articles with similar content:

RANS modelling and LES of particle deposition in a turbulent square duct flow
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2009, issue
Jun Yao, J. Adams, Michael Fairweather
NUMERICAL SIMULATION OF DROPLET FORMATION FROM COAXIAL TWIN-FLUID ATOMIZER
Atomization and Sprays, Vol.12, 2002, issue 1-3
Takao Inamura, Masatoshi Daikoku
A NUMERICAL STUDY ON THE EFFECTS OF ANISOTROPIC TURBULENCE ON THE BEHAVIORS OF IMPINGING SPRAYS
Atomization and Sprays, Vol.17, 2007, issue 2
Gwon Hyun Ko, Hong Sun Ryou
SPRAY MODELING USING LAGRANGIAN DROPLET TRACKING IN A HOMOGENEOUS FLOW MODEL
Atomization and Sprays, Vol.12, 2002, issue 5&6
Stephen D. Heister, T. L. Pham
DIESEL SPRAY CFD SIMULATIONS BASED ON THE Σ-Υ EULERIAN ATOMIZATION MODEL
Atomization and Sprays, Vol.23, 2013, issue 1
E. Baldwin, N. Trask, David P. Schmidt, Jose M. Pastor, Adrian Pandal, Jose M. Garcia-Oliver