Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Atomization and Sprays
Impact-faktor: 1.262 5-jähriger Impact-Faktor: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 1.6

ISSN Druckformat: 1044-5110
ISSN Online: 1936-2684

Volumes:
Volumen 29, 2019 Volumen 28, 2018 Volumen 27, 2017 Volumen 26, 2016 Volumen 25, 2015 Volumen 24, 2014 Volumen 23, 2013 Volumen 22, 2012 Volumen 21, 2011 Volumen 20, 2010 Volumen 19, 2009 Volumen 18, 2008 Volumen 17, 2007 Volumen 16, 2006 Volumen 15, 2005 Volumen 14, 2004 Volumen 13, 2003 Volumen 12, 2002 Volumen 11, 2001 Volumen 10, 2000 Volumen 9, 1999 Volumen 8, 1998 Volumen 7, 1997 Volumen 6, 1996 Volumen 5, 1995 Volumen 4, 1994 Volumen 3, 1993 Volumen 2, 1992 Volumen 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.2017020387
pages 723-739

NUMERICAL STUDY OF SUBMERGED CAVITATING THROTTLE FLOWS

Bruno Beban
Technical University of Munich, Department of Mechanical Engineering, Chair of Aerodynamics and Fluid Mechanics, Germany
S. J. Schmidt
Chair of Aerodynamics and Fluid Mechanics, Department of Mechanical Engineering, Technical University of Munich, 85748 Garching bei München, Germany
N. A. Adams
Technical University of Munich, Department of Mechanical Engineering, Chair of Aerodynamics and Fluid Mechanics, Germany

ABSTRAKT

We investigate by numerical simulation a highly unsteady cavitating flow of ISO 4113 test fuel in the valve chamber of a Diesel common rail injection system. Two-phase modeling is based on a single-fluid approach and a homogeneous mixture model. A fully compressible flow solver, taking into account the compressibility of liquid and liquid–vapor mixture, is employed. Computational results for two similar designs are presented. We discuss the cavity dynamics and reverse flow development in the discharge throttles for a pressure drop of approximately 2000 bar and choked flow conditions. The focus of this study is placed on inertia-driven effects and formation of collapse-induced pressure peaks, which allows us to apply an inviscid flow model. Our contribution assesses the erosion risk by monitoring maximum instantaneous wall pressures and employing a collapse detector algorithm for the identification of implosions of isolated vapor clouds. High-speed liquid jet discharging from the throttle, accompanied by supercavitation and reverse motion in the throttle, is predicted by the numerical simulation. Collapse pressures higher than 1 GPa are observed near material surfaces, resulting in high surface loads which can eventually lead to material erosion.


Articles with similar content:

LARGE EDDY SIMULATIONS OF CAVITATING FLOW IN A STEP NOZZLE WITH INJECTION INTO GAS
Atomization and Sprays, Vol.28, 2018, issue 10
S. J. Schmidt, Nikolaus A. Adams, Theresa Trummler, D. Rahn
Study of Bubble Bursting at Free Surface using Coupled Eulerian-Lagrangian Approach
Proceedings of the 24th National and 2nd International ISHMT-ASTFE Heat and Mass Transfer Conference (IHMTC-2017), Vol.0, 2017, issue
Arup Kumar Das, Digvijay Singh
CLOUD CAVITATION: OBSERVATIONS, CALCULATIONS AND SHOCK WAVES
Multiphase Science and Technology, Vol.10, 1998, issue 4
Christopher E. Brennen
Shock-bubble Interaction Near a Compliant Tissue-like Material
TSFP DIGITAL LIBRARY ONLINE, Vol.10, 2017, issue
Nikolaus A. Adams, Xiangyu Y. Hu, Shusheng Pan, Stefan Adami
Transonic airfoil buffet at high Reynolds number by using wall-modeled large-eddy simulation
TSFP DIGITAL LIBRARY ONLINE, Vol.10, 2017, issue
Soshi Kawai, Yuma Fukushima