Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Atomization and Sprays
Impact-faktor: 1.262 5-jähriger Impact-Faktor: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 1.6

ISSN Druckformat: 1044-5110
ISSN Online: 1936-2684

Volumes:
Volumen 29, 2019 Volumen 28, 2018 Volumen 27, 2017 Volumen 26, 2016 Volumen 25, 2015 Volumen 24, 2014 Volumen 23, 2013 Volumen 22, 2012 Volumen 21, 2011 Volumen 20, 2010 Volumen 19, 2009 Volumen 18, 2008 Volumen 17, 2007 Volumen 16, 2006 Volumen 15, 2005 Volumen 14, 2004 Volumen 13, 2003 Volumen 12, 2002 Volumen 11, 2001 Volumen 10, 2000 Volumen 9, 1999 Volumen 8, 1998 Volumen 7, 1997 Volumen 6, 1996 Volumen 5, 1995 Volumen 4, 1994 Volumen 3, 1993 Volumen 2, 1992 Volumen 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.v15.i2.60
pages 201-222

EXPERIMENTAL CHARACTERIZATION OF AN INTERMITTENT GASOLINE SPRAY IMPINGING UNDER CROSS-FLOW CONDITIONS

Miguel R. Oliveira Panão
ADAI-LAETA, Mechanical Engineering Department, University of Coimbra, Rua Luis Reis Santos, 3030-788 Coimbra, Portugal
Antonio L. N. Moreira
IN+ Center for Innovation, Technology and Policy Research, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisbon 1049-001, Portugal

ABSTRAKT

This article reports an experimental study on an intermittent gasoline spray impinging onto a flat surface in the presence of a cross flow. The experiments include detailed phase Doppler anemometry (PDA) measurements of droplet size, velocity, and volume flux to quantify the time-dependent fluid dynamic interactions between the spray and the cross flow. The analysis is performed in terms of the expected influence on the outcome of impact.
Interposition of the wall decreases the penetration rate of the spray, and therefore the energy available at impact is smaller than would be expected from the analysis of the free spray. However, the main effect of the wall is due to the formation of a three-dimensional time-varying vortical structure in the vicinity of the wall, which entrains reatomized droplets to reimpinge with smaller Reynolds numbers, thus contributing to the formation of the wall liquid film. Although spray/wall interaction is altered due to deviation of the impinging spray by the cross flow, the main effect is due to drag of small droplets from the vortical structure, thus reducing the number of droplets predicted to stick at the wall. However, it is suggested that the cross flow enhances the interaction between crowns at the target surface and impinging droplets, in such a way that the volume flux of small droplets flying way from the surface may overcome the volume flux of impinging droplets.


Articles with similar content:

FLOW CONTROL ON A TWO-DIMENSIONAL CIRCULAR CYLINDER
TSFP DIGITAL LIBRARY ONLINE, Vol.3, 2003, issue
Michael Amitay, Ari Glezer, Andrew M. Honohan
UNSTEADY INJECTION OF SEQUENCES OF DROP CLUSTERS IN VORTICES DEPICTING PORTIONS OF A SPRAY
ICLASS 94
Proceedings of the Sixth International Conference on Liquid Atomization and Spray Systems, Vol.0, 1994, issue
Josette Bellan, K. Harstad
ON THE MODELING OF A SPRAY IMPINGEMENT ONTO A HOT SURFACE
First Thermal and Fluids Engineering Summer Conference, Vol.8, 2015, issue
Andre R. R. Silva, Christian M. G. Rodrigues, Jorge M. M. Barata
GASOLINE INJECTION AGAINST SURFACES AND FILMS
Atomization and Sprays, Vol.7, 1997, issue 4
D. S. Whitelaw, Jim H. Whitelaw, C. Arcoumanis
DEVELOPMENT OF AN IMPROVED SPRAY/WALL INTERACTION MODEL FOR DIESEL-LIKE SPRAY IMPINGEMENT SIMULATIONS
Atomization and Sprays, Vol.25, 2015, issue 7
Rolf D. Reitz, Qi Jiao, Peng Deng, Zhiyu Han