Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Atomization and Sprays
Impact-faktor: 1.737 5-jähriger Impact-Faktor: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 2.2

ISSN Druckformat: 1044-5110
ISSN Online: 1936-2684

Volumes:
Volumen 30, 2020 Volumen 29, 2019 Volumen 28, 2018 Volumen 27, 2017 Volumen 26, 2016 Volumen 25, 2015 Volumen 24, 2014 Volumen 23, 2013 Volumen 22, 2012 Volumen 21, 2011 Volumen 20, 2010 Volumen 19, 2009 Volumen 18, 2008 Volumen 17, 2007 Volumen 16, 2006 Volumen 15, 2005 Volumen 14, 2004 Volumen 13, 2003 Volumen 12, 2002 Volumen 11, 2001 Volumen 10, 2000 Volumen 9, 1999 Volumen 8, 1998 Volumen 7, 1997 Volumen 6, 1996 Volumen 5, 1995 Volumen 4, 1994 Volumen 3, 1993 Volumen 2, 1992 Volumen 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.2011003894
pages 447-465

QUANTITATIVE ANALYSES OF FUEL SPRAY-AMBIENT GAS INTERACTION BY MEANS OF LIF-PIV TECHNIQUE

Jingyu Zhu
Mazda Motor Corporation, 3-1 Shinchi, Fuchu-cho, Aki-gun, Hiroshima 730-8670, Japan
Keiya Nishida
Department of Mechanical System Engineering, University of Hiroshima, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
Olawole Abiola Kuti
Department of Mechanical System Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi Hiroshima 739-8527, Japan
Seoksu Moon
Department of Mechanical Engineering, Inha University

ABSTRAKT

The in-cylinder fuel-ambient gas mixing property in a direct injection (D.I.) diesel engine significantly influences the ensuing combustion and exhaust emission performance. In this study, the interaction of nonevaporating diesel spray with the surrounding gas was analyzed quantitatively in the quiescent condition at room temperature and with ambient gas pressure of 1 MPa by means of the laser induced fluorescence-particle image velocimetry (LIF-PIV) technique. Particularly, this study focused on the calculation of gas mass flow rate entrained through the entire spray region (spray side periphery and tip region) and total entrained gas-fuel ratio by using the gas velocity data obtained by the LIF-PIV technique. Another focus of this study was the gas entrainment characteristics of diesel spray under a wide range of injection pressures (100, 200, and 300 MPa) and the micro-hole nozzle (0.08mm) condition. The results indicate that the entrained gas mass flow rate at the spray tip region is prominent in the whole periphery and the proportion of gas entrainment at the side surface region increases as the spray develops Higher injection pressure significantly enhances the total entrained gas mass; however the increase of ambient gas/fuel mass ratio becomes moderate gradually as the injection pressure increases. The calculation model proposed by this work is capable of illustrating the ambient gas flow characteristics of the diesel spray accurately.


Articles with similar content:

EXPERIMENTAL STUDY ON SPRAY ANGLE AND VELOCITY DISTRIBUTION OF DIESEL SPRAY UNDER HIGH AMBIENT PRESSURE CONDITIONS
Atomization and Sprays, Vol.21, 2011, issue 12
Masataka Arai, Yoshio Zama, Wataru Ochiai, Tomohiko Furuhata
EXPERIMENTAL STUDY ON FLOW FIELDS OF FUEL DROPLETS AND AMBIENT GAS OF DIESEL SPRAY-FREE SPRAY AND FLAT-WALL IMPINGING SPRAY
Atomization and Sprays, Vol.24, 2014, issue 7
Takumi Uemura, Keiya Nishida, Jingyu Zhu
EXPERIMENTAL STUDY ON INJECTION AND MACROSCOPIC SPRAY CHARACTERISTICS OF ETHYL OLEATE, JET FUEL, AND THEIR BLEND ON A DIESEL ENGINE COMMON RAIL SYSTEM
Atomization and Sprays, Vol.25, 2015, issue 9
Dong Han, Zhen Huang, Pengfei Li, He Lin, Chunhai Wang, Yaozong Duan
INVESTIGATION OF THE CHARACTERISTICS OF FUEL ADHESION FORMED BY SPRAY/WALL INTERACTION UNDER DIESEL PREMIXED CHARGE COMPRESSION IGNITION (PCCI) RELEVANT CONDITIONS
Atomization and Sprays, Vol.25, 2015, issue 11
Maozhao Xie, Hong Liu, Ming Jia, Yanzhi Zhang, Tianyou Wang
EXPERIMENTAL STUDY ON VELOCITY DISTRIBUTION OF POSTIMPINGEMENT DIESEL SPRAY ON A WALL. PART 1: EFFECT OF IMPINGEMENT ANGLE ON FLOW PATTERN
Atomization and Sprays, Vol.24, 2014, issue 8
Masataka Arai, Yoshio Zama, Tomohiko Furuhata, Mohd Zaid Akop, Kazuma Sugawara