Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Atomization and Sprays
Impact-faktor: 1.262 5-jähriger Impact-Faktor: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 1.6

ISSN Druckformat: 1044-5110
ISSN Online: 1936-2684

Volumes:
Volumen 29, 2019 Volumen 28, 2018 Volumen 27, 2017 Volumen 26, 2016 Volumen 25, 2015 Volumen 24, 2014 Volumen 23, 2013 Volumen 22, 2012 Volumen 21, 2011 Volumen 20, 2010 Volumen 19, 2009 Volumen 18, 2008 Volumen 17, 2007 Volumen 16, 2006 Volumen 15, 2005 Volumen 14, 2004 Volumen 13, 2003 Volumen 12, 2002 Volumen 11, 2001 Volumen 10, 2000 Volumen 9, 1999 Volumen 8, 1998 Volumen 7, 1997 Volumen 6, 1996 Volumen 5, 1995 Volumen 4, 1994 Volumen 3, 1993 Volumen 2, 1992 Volumen 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.2018021180
pages 255-279

APPLICATION OF THE INFRARED EXTINCTION TO A SWIRLED AIR/ETHANOL SPRAY DOWNSTREAM FROM A TURBOJET INJECTION SYSTEM

Virginel Bodoc
ONERA - The French Aerospace Lab, Toulouse, 31055, France
Olivier Rouzaud
ONERA - The French Aerospace Lab

ABSTRAKT

An investigation of the vapor phase concentration is performed using the infrared extinction technique on an ethanol spray injected into a heated environment. Experiments are carried out on a confined geometry behind a real-scale injection system. It is composed of a pressure atomizer and an air swirler. The first part of the paper describes the fundamentals of the measurement technique and the experimental procedure. To obtain spatially resolved results, a deconvolution procedure based on the Abel algorithm and Tikhonov regularization is developed. In the second part, the steady measurements performed downstream from the injector provide the radial evolution of the integral vapor molar concentration for various different air temperatures. In addition, a spectral analysis of time-resolved recordings shows that the liquid droplets are moving with the frequency of the precessing vortex core. In the last part of the paper, the local measured values of concentration are compared to the numerical ones. First, the numerical approach is validated for the pure gaseous and two-phase flow behavior. Second, the experimental and numerical vapor molar concentrations are presented and discussed.