Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Atomization and Sprays
Impact-faktor: 1.262 5-jähriger Impact-Faktor: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 1.6

ISSN Druckformat: 1044-5110
ISSN Online: 1936-2684

Volumes:
Volumen 29, 2019 Volumen 28, 2018 Volumen 27, 2017 Volumen 26, 2016 Volumen 25, 2015 Volumen 24, 2014 Volumen 23, 2013 Volumen 22, 2012 Volumen 21, 2011 Volumen 20, 2010 Volumen 19, 2009 Volumen 18, 2008 Volumen 17, 2007 Volumen 16, 2006 Volumen 15, 2005 Volumen 14, 2004 Volumen 13, 2003 Volumen 12, 2002 Volumen 11, 2001 Volumen 10, 2000 Volumen 9, 1999 Volumen 8, 1998 Volumen 7, 1997 Volumen 6, 1996 Volumen 5, 1995 Volumen 4, 1994 Volumen 3, 1993 Volumen 2, 1992 Volumen 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.v7.i2.40
pages 161-181

INDEPENDENT CONTROL OF LIQUID FLOW RATE AND SPRAY DROPLET SIZE FROM HYDRAULIC ATOMIZERS

D. Ken Giles
Department of Biological and Agricultural Engineering, University of California—Davis, Bainer Hall, One Shields Avenue, Davis, CA 95616, USA

ABSTRAKT

Independent control of the temporally averaged liquid flow rate and the droplet size spectrum emitted from hydraulic atomizers was achieved by coupling control of liquid supply pressure and pulse-width modulation (PWM) of instantaneous nozzle flow. Experimental results for a number of atomizer types, typical of agrochemical spraying, indicated that 10:1 flow turndown ratios could be achieved affixed liquid supply pressures. Such capability is useful when a wide range of application rate and rapid response are desired. The spray droplet volume median diameter of emitted spray could be concurrently controlled over a two- to threefold range. The technique is useful when off-target movement of spray material can be reduced by decreasing the volume fraction of spray material contained in small droplets. The dynamic control range allowed eightfold reductions in the spray volume contained in droplets less than 105 μm diameter. The technique was designed for integration into spray application controllers with flow and pressure feedback loops. The technique is limited to spray applications where the nozzle flow is the predominant mechanism for atomization. In situations such as high-speed air flow past a nozzle, the secondary breakup of the emitted spray can reduce the effectiveness of the technique significantly.


Articles with similar content:

MICROMACHINED ULTRASONIC ATOMIZER FOR LIQUID FUELS
Atomization and Sprays, Vol.18, 2008, issue 2
M. J. Varady, F. L. Degertekin, J. M. Meacham, Andrei G. Fedorov, D. Esposito
IMPROVEMENT OF THE SEPARATION EFFICIENCY IN A WET SCRUBBER BY INCREASING THE TURBULENCE ENERGY OF THE FLOW SYSTEM
ICLASS 94
Proceedings of the Sixth International Conference on Liquid Atomization and Spray Systems, Vol.0, 1994, issue
J. Krames, F. Ebert, S. Schurmann, L. Bendig, H. Buttner
EFFERVESCENT ATOMIZATION OF HIGH-VISCOSITY FLUIDS: PART I. NEWTONIAN LIQUIDS
Atomization and Sprays, Vol.1, 1991, issue 3
Paul E. Sojka, Harry N. Buckner
DROPLET SHADOW VELOCIMETRY BASED ON MONOFRAME TECHNIQUE
Atomization and Sprays, Vol.28, 2018, issue 7
M. J. Akbari, Azadeh Kebriaee, F. Abbasi Zarrin
ATOMIZATION BEHAVIOR AND ENERGY ANALYSIS FOR A SINGLE DROPLET IMPINGED ON A SURFACE OSCILLATING WITH ULTRASONIC FREQUENCY
Atomization and Sprays, Vol.17, 2007, issue 7
Akira Ishii, Masataka Arai, Masahiro Saito