Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Atomization and Sprays
Impact-faktor: 1.189 5-jähriger Impact-Faktor: 1.596 SJR: 0.814 SNIP: 1.18 CiteScore™: 1.6

ISSN Druckformat: 1044-5110
ISSN Online: 1936-2684

Volumes:
Volumen 29, 2019 Volumen 28, 2018 Volumen 27, 2017 Volumen 26, 2016 Volumen 25, 2015 Volumen 24, 2014 Volumen 23, 2013 Volumen 22, 2012 Volumen 21, 2011 Volumen 20, 2010 Volumen 19, 2009 Volumen 18, 2008 Volumen 17, 2007 Volumen 16, 2006 Volumen 15, 2005 Volumen 14, 2004 Volumen 13, 2003 Volumen 12, 2002 Volumen 11, 2001 Volumen 10, 2000 Volumen 9, 1999 Volumen 8, 1998 Volumen 7, 1997 Volumen 6, 1996 Volumen 5, 1995 Volumen 4, 1994 Volumen 3, 1993 Volumen 2, 1992 Volumen 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.2013008320
pages 925-955

LARGE EDDY SIMULATION OF FUEL-SPRAY UNDER NON-REACTING IC ENGINE CONDITIONS

Qingluan Xue
Argonne National Laboratory
Sibendu Som
Energy Systems Division, Argonne National Laboratory, Argonne, Illinois, 60439, USA
Peter K. Senecal
Convergent Science Inc., Middleton, Wisconsin, 53562, USA
E. Pomraning
Convergent Science Inc., Middleton, Wisconsin, 53562, USA

ABSTRAKT

This work examines the Subgrid-scale (SGS) model performance and effects of grid resolution for fuel spray simulations within a Lagrangian-Eulerian framework. The widely studied SGS models for large eddy simulation (LES), namely, (1) Smagorinsky model, (2) one-equation dynamic structure model, and (3) no SGS model, are investigated and compared with the Reynolds averaged Navier-Stokes (RANS) approach using the RNG k − ε model. The simulation results are also compared against experimental data. For each turbulence model, simulations are performed with different smallest grid sizes ranging from 500 to 31.25 µm using adaptive mesh refinement with a base grid size of 1 mm. The corresponding smallest grid size to nozzle diameter ratios are 5−0.3. Two diesel surrogates, namely, n-heptane and n-dodecane, are studied under nonreacting conditions relevant for compression ignition engine applications. Experimental data from Sandia National Laboratory through the Engine Combustion Network (ECN) are used for validation purposes. The qualitative comparisons are conducted for the instantaneous mixture fraction and temperature contours. Quantitatively, predicted global spray characteristics of liquid spray and vapor penetration, as well as radial and axial mixture fraction and axial velocity profiles at different locations, are compared against the measurements. Additionally, five different injection realizations are simulated for all the models, with a smallest grid size of 62.5 µm to capture cycle-to-cycle variations. The required grid resolution for grid convergence for LES spray simulations is discussed based on the experimental comparisons. With the dramatic increase in computational resources in the past decade, this study indicates that LES is a viable alternative to RANS for engine sprays, since it is more predictive in capturing flow structure and local spray characteristics, with reasonable wall-clock times.


Articles with similar content:

LARGE EDDY SIMULATION OF HIGH-VELOCITY FUEL SPRAYS: STUDYING MESH RESOLUTION AND BREAKUP MODEL EFFECTS FOR SPRAY A
Atomization and Sprays, Vol.23, 2013, issue 5
Martti Larmi, Ossi Kaario, Armin Wehrfritz, Ville Vuorinen
FLOW DYNAMICS IN A SWIRLING JET COMBUSTOR
TSFP DIGITAL LIBRARY ONLINE, Vol.2, 2001, issue
E.J. Gutmark, H.C. Mongia, G. Hsiao, Fernando F. Grinstein, Timothy R. Young, G. Li
A COMPARATIVE RANS/LES STUDY OF TRANSIENT GAS JETS AND SPRAYS UNDER DIESEL CONDITIONS
Atomization and Sprays, Vol.17, 2007, issue 5
Xi Jiang, Hua Zhao, Mariafrancesca Valentino
ENGINE COMBUSTION NETWORK: COMPARISON OF SPRAY DEVELOPMENT, VAPORIZATION, AND COMBUSTION IN DIFFERENT COMBUSTION VESSELS
Atomization and Sprays, Vol.22, 2012, issue 10
Michele Bardi, Tim Bazyn, Caroline L. Genzale, Raul Payri, Gilles Bruneaux, Lyle M. Pickett, Julien Manin, Louis Marie C. Malbec
X-RAY RADIOGRAPHY MEASUREMENTS OF CAVITATING NOZZLE FLOW
Atomization and Sprays, Vol.23, 2013, issue 9
Daniel Duke, Andrew B. Swantek, Alan L. Kastengren, Christopher F. Powell, F. Zak Tilocco